scholarly journals Population genetics of Bull Trout (Salvelinus confluentus) in the Upper Athabasca river basin

2019 ◽  
Author(s):  
Emma K. T. Carroll ◽  
Steven M. Vamosi

AbstractAcross its native range, Bull Trout (Salvelinus confluentus) extent and abundance are in decline due to historic overharvest and habitat degradation. Because Bull Trout are dependent on extensively connected, cold, clean headwater habitats, fragmentation from land use changes causes difficulty when determining the true extent and health of their populations, with Bull Trout of Alberta’s Eastern Slope region being no exception. Across this region, 431 Bull Trout from 20 sites were sampled from the Athabasca and Saskatchewan River basins and compared using 10 microsatellite loci to characterize within- and among-population genetic variation. The Saskatchewan and Athabasca River basins contained similar levels of heterozygosity but were differentiated from one another. Within the Athabasca River basin, five genetically differentiated clusters were found. Additionally, no isolation-by-distance pattern was observed between these sites. These results suggest these populations have ample genetic diversity, but genetic differentiation should be considered when deciding whether and how to alter connectivity between populations.

2014 ◽  
Vol 22 (4) ◽  
pp. 39-50 ◽  
Author(s):  
Marek Havlíček ◽  
Renata Pavelková ◽  
Jindřich Frajer ◽  
Hana Skokanová

Abstract The long-term development of water bodies is investigated in this article using the cases of two river basins with similar natural conditions: the Kyjovka and Trkmanka River Basins in the Czech Republic. Using old topographic maps, land use development was assessed and the analysis of driving forces of land use changes was carried out. The essential land use changes in these areas are connected with the processes of agricultural intensification and urbanisation. The largest area of water bodies was recorded in both river basins in 1763. In the second half of the 19th century, the disappearance of most water bodies in the two basins was significantly affected by the above-mentioned driving forces. After World War II, some of the water bodies in the Kyjovka River Basin were restored and new ponds were established. In contrast, no significant water bodies were restored in the Trkmanka River Basin.


2018 ◽  
Vol 47 (1) ◽  
pp. 237-248 ◽  
Author(s):  
Gojko NIKOLIC ◽  
Velibor SPALEVIC ◽  
Milic CUROVIC ◽  
Abdulvahed KHALEDI DARVISHAN ◽  
Goran SKATARIC ◽  
...  

Vegetation cover change in all the river basins leads to the changes of hydrologic response, soil erosion and sediment dynamics characteristics. Those changes are often viewed as main cause of anthropogenic and accelerated erosion rates in short term and one of the main reasons of climate change in long term. The effects of vegetation cover changes on various parts of water balance and hydrological cycle has to be deeply studied because of its important role on mankind future. The aim of present research was therefore to simulate the responses of soil erosion processes by using a process-oriented soil erosion model IntErO, with the different settings of land use for the years 1977, 1987, 1997, 2006 (2007) and 2016 (2017) in Orahovacka Rijeka watershed; a pilot river basin of the Polimlje Region for the northeastern part of Montenegro. For the current state of land use, calculated peak discharge for the Orahovacka Rijeka was 174-175 m3 s-1 (the incidence of 100 years) and there is a possibility for large flood waves to appear in the studied basin. Real soil losses, Gyear, were calculated on 2614-2921 m3 year-1, specific 229-256 m3 km-2 year-1 (1977-2017). The value of Z coefficient range from 0.444 to 0.478 and indicates that the river basin belongs to III destruction category. The strength of the erosion process is medium, and according to the erosion type, it is surface erosion. According to our analysis the land use changes in the last 40 years influenced the increase of the soil erosion intensity for 11% in the study watershed. Further studies should be focused on the detailed analysis of the land use changes trends with the other river basins at the national level, closely following responses of soil erosion to the changed land use structure. The results and approach also should be used by policymakers in all national natural resources organizations to highlight the role of management.


Geographies ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 315-332
Author(s):  
Paolo Magliulo ◽  
Angelo Cusano ◽  
Filippo Russo

In river basins, the deep interrelationships between land-use changes, soil erosion and rivers and shoreline dynamics are clearer than at a national or regional scale. Southern Italy is an ecologically fragile, desertification-prone territory where land-use changes in the last decades were significant. Notwithstanding this, studies dealing with multidecadal land-use changes in large-sized river basins of Southern Italy and their implications on soil erosion are missing. In this study, we assessed the land-use changes that occurred between 1960 and 2012 in the 3245 km2-wide Sele River basin. We carried out GIS-aided comparisons and analysis of two land-use maps and interpreted the results in terms of soil erosion intensity based on a detailed review of the scientific literature. The results confirmed the trend of the inner areas of Italy and, in particular, of the Campania region moving towards more pristine conditions, with an increase in forest cover, mainly at the expense of grasslands. Agricultural areas remained substantially unchanged, while the area of urban settlements increased. The diffuse afforestation of slopes suggested an overall decrease in soil erosion intensity, which was fully coherent with the geomorphological evolution of both the Sele River and local shoreline reported in literature.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2973
Author(s):  
Velibor Spalevic ◽  
Goran Barovic ◽  
Dusko Vujacic ◽  
Milic Curovic ◽  
Morteza Behzadfar ◽  
...  

Land use change in all river basins leads to changes in hydrologic response, soil erosion, and sediment dynamics characteristics. Those changes are often viewed as the main cause of accelerated erosion rates. We studied the impact of land use changes on soil erosion processes in one of the watersheds in Montenegro: the Miocki Potok, using this watershed as a pilot river basin for this area. We simulated responses of soil erosion processes by using a process-oriented soil erosion Intensity of Erosion and Outflow (IntErO) model, with different settings of land use for the years 1970, 1980, 1990, 2000, 2010, and 2020. The model provides fast, effective, and affordable insight into the effects of land use change on soil erosion processes. Testing of the applied procedures was important for the further establishment of watershed management methodologies at the national level, for the other 300 river basins of Montenegro. For the current state of land use, calculated peak discharge for the Miocki Potok was 364 m3 s−1 (2020)–372 m3 s−1 (1970) for the incidence of 100 years, and there is a possibility for large flood waves to appear in the studied basin. Real soil losses, Gyear, were calculated at 13680 m3 year−1 (2020) and specific 333 m3 km−2 year−1 (2020). A Z coefficient value of 0.439 (2020) indicated that the river basin belongs to destruction category III. The strength of the erosion process was medium, and according to the erosion type, it was mixed erosion. According to our analysis, the land use changes in the last 50 years influenced a decrease in the soil erosion intensity for 14% in the Miocki Potok River Basin. Further studies should be focused on the detailed analysis of the land use changes trends with the other river basins at the national level, closely following responses of soil erosion to the changed land use structure, and effects of plant-and-soil interaction on soil erosion and sediment dynamics.


2005 ◽  
Vol 62 (11) ◽  
pp. 2431-2442 ◽  
Author(s):  
Travis Ripley ◽  
Garry Scrimgeour ◽  
Mark S Boyce

We examined relations between cumulative levels of forest harvesting and density of road networks on the occurrence and abundance of bull trout (Salvelinus confluentus) in the Kakwa River Basin, Alberta. Logistic regression models showed that bull trout occurrence was positively related to stream wetted width but negatively related to percent fines, percent cobbles, reach slope, and the cumulative area of the subbasin harvested and road density. Results from zero-inflated Poisson regression models typically showed that bull trout abundance was positively related to elevation and negatively related to stream width, percent fines, percent cobble, slope, and levels of forest harvesting. Using the negative relation between bull trout occurrence and percentage of subbasins harvested derived from the most parsimonious logistic regression model, we forecasted that forest harvesting over the next 20 years is projected to result in the local extirpation of bull trout from 24% to 43% of stream reaches that currently support bull trout in the Kakwa River Basin.


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


Sign in / Sign up

Export Citation Format

Share Document