scholarly journals Context-dependent decision making in a premotor circuit

2019 ◽  
Author(s):  
Zheng Wu ◽  
Ashok Litwin-Kumar ◽  
Philip Shamash ◽  
Alexei Taylor ◽  
Richard Axel ◽  
...  

SummaryCognitive capacities afford contingent associations between sensory information and behavioral responses. We studied this problem using an olfactory delayed match to sample task whereby a sample odor specifies the association between a subsequent test odor and rewarding action. Multi-neuron recordings revealed representations of the sample and test odors in olfactory sensory and association cortex, which were sufficient to identify the test odor as match/non-match. Yet, inactivation of a downstream premotor area (ALM), but not orbitofrontal cortex, confined to the epoch preceding the test odor, led to gross impairment. Olfactory decisions that were not context dependent were unimpaired. Therefore, ALM may not receive the outcome of a match/non-match decision from upstream areas but contextual information—the identity of the sample—to establish the mapping between test odor and action. A novel population of pyramidal neurons in ALM layer 2 may mediate this process.


2016 ◽  
Vol 113 (10) ◽  
pp. E1372-E1381 ◽  
Author(s):  
Taekeun Kim ◽  
Won Chan Oh ◽  
Joon Ho Choi ◽  
Hyung-Bae Kwon

During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.



Author(s):  
Rebecca Jordan ◽  
Georg B. Keller

ABSTRACTProcessing in cortical circuits is driven by combinations of cortical and subcortical inputs. These signals are often conceptually categorized as bottom-up input, conveying sensory information, and top-down input, conveying contextual information. Using intracellular recordings in mouse visual cortex, we measured neuronal responses to visual input, locomotion, and visuomotor mismatches. We show that layer 2/3 (L2/3) neurons compute a difference between top-down motor-related input and bottom-up visual flow input. Most L2/3 neurons responded to visuomotor mismatch with either hyperpolarization or depolarization, and these two response types were associated with distinct physiological properties. Consistent with a subtraction of bottom-up and top-down input, visual and motor-related inputs had opposing influence in L2/3 neurons. In infragranular neurons, we found no evidence of a difference-computation and responses were consistent with a positive integration of visuomotor inputs. Our results provide evidence that L2/3 functions as a bidirectional comparator of top-down and bottom-up input.



2020 ◽  
Author(s):  
Guillaume Bony ◽  
Arjun A Bhaskaran ◽  
Katy Le Corf ◽  
Andreas Frick

ABSTRACTThe mouse primary somatosensory cortex (S1) processes tactile sensory information and is the largest neocortex area emphasizing the importance of this sensory modality for rodent behavior. Most of our knowledge regarding information processing in S1 stems from studies of the whisker-related barrel cortex (S1–BC), yet the processing of tactile inputs from the hind-paws is poorly understood. We used in vivo whole-cell patch-clamp recordings from layer (L) 2/3 pyramidal neurons (PNs) of the S1 hind-paw (S1-HP) region of anaesthetized wild type (WT) mice to investigate their evoked sub- and supra-threshold activity, intrinsic properties, and spontaneous activity. Approximately 45% of these L2/3 PNs responded to brief contralateral HP stimulation in a subthreshold manner, ~5% fired action potentials, and ~50% of L2/3 PNs did not respond at all. The evoked subthreshold responses had long onset- (~23 ms) and peak-latencies (~61 ms). The majority (86%) of these L2/3 PNs responded to prolonged (stance-like) HP stimulation with both on- and off-responses. HP stimulation responsive L2/3 PNs had a greater intrinsic excitability compared to non-responsive ones, possibly reflecting differences in their physiological role. Similar to S1-BC, L2/3 PNs displayed up- and down-states, and low spontaneous firing rates (~0.1 Hz). Our findings support a sparse coding scheme of operation for S1–HP L2/3 PNs and highlight both differences and similarities with L2/3 PNs from other somatosensory cortex areas.KEY POINTSResponses of layer (L) 2/3 pyramidal neurons (PNs) of the primary somatosensory hind-paw cortex (S1-HP) to contralateral hind-paw stimulation reveal both differences and similarities compared to those of somatosensory neurons responding to other tactile (e.g. whiskers, forepaw, tongue) modalities.Similar to whisker-related barrel cortex (S1-BC) and forepaw cortex (S1-FP) S1-HP L2/3 PNs show a low spontaneous firing rate and a sparse action potential coding of evoked activity.In contrast to S1-BC, brief hind-paw stimulus evoked responses display a long latency in S1-HP neurons consistent with their different functional role.The great majority of L 2/3 PNs respond to prolonged hind-paw stimulation with both on- and off-responses.These results help us to better understand sensory information processing within layer 2/3 of the neocortex and the regional differences related to various tactile modalities.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen Feigin ◽  
Shira Baror ◽  
Moshe Bar ◽  
Adam Zaidel

AbstractPerceptual decisions are biased by recent perceptual history—a phenomenon termed 'serial dependence.' Here, we investigated what aspects of perceptual decisions lead to serial dependence, and disambiguated the influences of low-level sensory information, prior choices and motor actions. Participants discriminated whether a brief visual stimulus lay to left/right of the screen center. Following a series of biased ‘prior’ location discriminations, subsequent ‘test’ location discriminations were biased toward the prior choices, even when these were reported via different motor actions (using different keys), and when the prior and test stimuli differed in color. By contrast, prior discriminations about an irrelevant stimulus feature (color) did not substantially influence subsequent location discriminations, even though these were reported via the same motor actions. Additionally, when color (not location) was discriminated, a bias in prior stimulus locations no longer influenced subsequent location discriminations. Although low-level stimuli and motor actions did not trigger serial-dependence on their own, similarity of these features across discriminations boosted the effect. These findings suggest that relevance across perceptual decisions is a key factor for serial dependence. Accordingly, serial dependence likely reflects a high-level mechanism by which the brain predicts and interprets new incoming sensory information in accordance with relevant prior choices.



2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.



2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Matthieu Lebon ◽  
Lucile Beck ◽  
Sylvain Grégoire ◽  
Laurent Chiotti ◽  
Roland Nespoulet ◽  
...  

Iron oxide pigments found in archaeological context constitute an important source of information for the understanding of cultural and subsistence activities of ancient human cultures. In order to complete archaeological contextual information, many analytical methods have been applied to characterise pigments and to provide further information on this material (<em>e.g.</em> supplies, selections, mechanical or physical transformations of raw material, use and application processes). Several studies have demonstrated that the elemental composition of iron oxide pigments can be used to discriminate between several geological provenances. In this study, non-destructive micro-particle induced Xray emission analysis was applied in order to distinguish different kinds of reddish pigments from the prehistoric site of Abri Pataud, more especially from the Layer 2 attributed to Final Gravettian period (22,000 BP). By using an external beam, this technique required no sampling, and enabled us to perform localised analyses directly on raw material, on ochre residues applied on artefacts or on fragments of the wall of this rock-shelter. The results obtained by this technique demonstrate that the pigments covering the decorated fragments of the rock-shelter wall, found during the excavation of the Layer 2, have elemental compositions similar to the composition of a raw pigment found in the same layer. These results suggest that the shelter was decorated during the Final Gravettian period and thus provide new insights for the understanding of the archaeological context of this occupation layer.



2020 ◽  
Vol 14 ◽  
Author(s):  
Shin-Hwa Tsai ◽  
Chih-Yu Tsao ◽  
Li-Jen Lee

Increased white matter neuron density has been associated with neuropsychiatric disorders including schizophrenia. However, the pathogenic features of these neurons are still largely unknown. Subplate neurons, the earliest generated neurons in the developing cortex have also been associated with schizophrenia and autism. The link between these neurons and mental disorders is also not well established. Since cortical layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons was quite low in the external capsule; however, the density of these cells was found increased (54%) in Het mice compared with wildtype (WT) littermates. The density of PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb neurons can be classified by their morphological characters. The morphology of Type I pyramidal neurons was comparable between genotypes while the dendritic length and complexity of Type II multipolar neurons were significantly reduced in Het mice. White matter neurons and layer VIb neurons receive synaptic inputs and modulate the process of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1 mutants implies altered brain functions in these mice.



Author(s):  
Dimitri Ryczko ◽  
Maroua Hanini-Daoud ◽  
Steven Condamine ◽  
Benjamin J. B. Bréant ◽  
Maxime Fougère ◽  
...  

AbstractThe most complex cerebral functions are performed by the cortex which most important output is carried out by its layer 5 pyramidal neurons. Their firing reflects integration of sensory and contextual information that they receive. There is evidence that astrocytes influence cortical neurons firing through the release of gliotransmitters such as ATP, glutamate or GABA. These effects were described at the network and at the synaptic levels, but it is still unclear how astrocytes influence neurons input-output transfer function at the cellular level. Here, we used optogenetic tools coupled with electrophysiological, imaging and anatomical approaches to test whether and how astrocytic activation affected processing and integration of distal inputs to layer 5 pyramidal neurons (L5PN). We show that optogenetic activation of astrocytes near L5PN cell body prolonged firing induced by distal inputs to L5PN and potentiated their ability to trigger spikes. The observed astrocytic effects on L5PN firing involved glutamatergic transmission to some extent but relied on release of S100β, an astrocytic Ca2+-binding protein that decreases extracellular Ca2+ once released. This astrocyte-evoked decrease of extracellular Ca2+ elicited firing mediated by activation of Nav1.6 channels. Our findings suggest that astrocytes contribute to the cortical fundamental computational operations by controlling the extracellular ionic environment.Key Points SummaryIntegration of inputs along the dendritic tree of layer 5 pyramidal neurons is an essential operation as these cells represent the most important output carrier of the cerebral cortex. However, the contribution of astrocytes, a type of glial cell to these operations is poorly documented.Here we found that optogenetic activation of astrocytes in the vicinity of layer 5 in the mouse primary visual cortex induce spiking in local pyramidal neurons through Nav1.6 ion channels and prolongs the responses elicited in these neurons by stimulation of their distal inputs in cortical layer 1.This effect partially involved glutamatergic signalling but relied mostly on the astrocytic calcium-binding protein S100β, which regulates the concentration of calcium in the extracellular space around neurons.These findings show that astrocytes contribute to the fundamental computational operations of the cortex by acting on the ionic environment of neurons.



Sign in / Sign up

Export Citation Format

Share Document