scholarly journals Defining the adult hippocampal neural stem cell secretome: in vivo versus in vitro transcriptomic differences and their correlation to secreted protein levels

2019 ◽  
Author(s):  
JK. Denninger ◽  
X. Chen ◽  
AM. Turkoglu ◽  
P. Sarchet ◽  
AR. Volk ◽  
...  

AbstractRecent evidence shows that adult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact cellular processes like neuronal maturation and stem cell maintenance, a broad characterization of NSPC-secreted factors is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells. Here, we analyzed the in vitro NSPC secretome using conditioned media from cultured adult mouse hippocampal NSPCs and detected over 200 different bioactive proteins with an antibody array. We next assessed the NSPC secretome on a transcriptional level with RNA sequencing (RNAseq) of cultured NSPCs. This comparison revealed that quantification of gene expression did not accurately predict relative protein abundance for several factors. Furthermore, comparing our transcriptional data with previously published single cell RNA sequencing datasets of freshly isolated hippocampal NSPCs, we found key differences in gene expression of secreted proteins between cultured and acutely isolated NSPCs. Understanding the components and functions of the NSPC secretome is essential to understanding how these cells may modulate the hippocampal neurogenic niche, as well as how they can be applied therapeutically. Cumulatively, our data emphasize the importance of using proteomic analysis in conjunction with transcriptomic studies and highlights the need for better methods of global unbiased secretome profiling.

2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3489-3489
Author(s):  
Ross Kinstrie ◽  
Dimitris Karamitros ◽  
Nicolas Goardon ◽  
Heather Morrison ◽  
Richard E Clark ◽  
...  

Abstract Blast phase (BP)-CML remains the most critical area of unmet clinical need in the management of CML and novel, targeted therapeutic strategies are urgently needed. In the tyrosine kinase inhibitor (TKI) era, the rate of progression to BP is 1 to 1.5% per annum in the first few years after diagnosis, falling sharply when major molecular response is obtained. Around 10% of patients present with de novo BP-CML and despite the use of TKIs, median survival after the diagnosis of BP-CML is between 6.5 and 11 months.Therefore, improved understanding of the biology of BP-CML and novel therapies to prolong therapeutic responses are urgently sought. Studies of myeloid malignancies show that acquisition of tumor-associated mutations occurs principally in a step-wise manner. Initiating mutations usually originate in an hematopoietic stem cell (HSC) to give rise to preleukemic stem cell populations that expand through clonal advantage. Further mutation acquisition and/or epigenetic changes then lead to blast transformation and disruption of the normal immunophenotypic and functional hematopoietic hierarchy. At this stage, multiple leukemic stem cell (LSC) populations (also termed leukemia initiating cell populations) can be identified. We previously showed, in AML, that the CD34+ LSC populations were most closely related to normal progenitor populations, rather than stem cell populations, but had co-opted elements of a normal stem cell expression signature to acquire abnormal self-renewal potential (Goardon et al, Cancer Cell, 2011). CD34+CD38- LSCs were most commonly similar to an early multi-potent progenitor population with lympho-myeloid potential (the lymphoid-primed multi-potential progenitor [LMPP]). In contrast, the CD34+CD38+ LSCs were most closely related to the more restricted granulocyte-macrophage progenitor (GMP). In chronic phase CML, the leukemia-propagating population is the HSC, and the progenitor subpopulations do not have stem cell characteristics. To date, studies to isolate LSC populations in BP-CML have been limited, identifying the GMP subpopulation only as a possible LSC source (Jamieson et al, NEJM, 2004). Furthermore, in vivo LSC activity has not been assessed. We therefore set out to assess the LSC characteristics of different primitive progenitor subpopulations in myeloid BP-CML both in vitro and in vivo. We isolated different stem and progenitor cell subpopulations using FACS; HSC (Lin-CD34+CD38-CD90+ CD45RA-), multipotent progenitor (MPP; Lin-CD34+CD38-CD90-CD45RA-), LMPP (Lin-CD34+CD38-CD90-CD45RA+), common myeloid progenitor (CMP; Lin-CD34+CD38+CD45RA-CD123+), GMP (Lin-CD34+CD38+CD45RA+CD123+) and megakaryocyte erythroid progenitor (MEP; Lin-CD34+CD38+CD45RA-CD123-). The functional potential of these purified populations was examined in 13 patients by: (i) serial CFC replating assays to study progenitor self-renewal (n=10); (ii) In vivo xenograft studies using NSG mice with serial transplantation to identify populations with LSC potential (n=6). Our data conclusively demonstrate that functional LSCs are present in multiple immunophenotypic stem/progenitor subpopulations in myeloid BP-CML, including HSC, MPP, LMPP, CMP and GMP subpopulations. There was inter-patient variability in terms of both in vitro and in vivo functional properties. Fluorescence in situ hybridisation (FISH) was used to assess clonality in the different progenitor subpopulations and identify which populations contained cells with additional cytogenetic abnormalities (ACAs) with a view to improving our understanding of the clonal hierarchy. Interestingly, there were no significant differences in ACAs in the different progenitor subpopulations in the majority of samples studied, suggesting that clonal evolution tends to occur in the HSC compartment in myeloid BP-CML. Preliminary gene expression profiling studies of the different progenitor subpopulations, using Affymetrix Human Gene 1.0 ST Arrays, demonstrated highly variable gene expression, supporting the functional heterogeneity seen. Taken together, our results demonstrate that myeloid BP-CML is a very heterogeneous disorder with variable LSC populations. Further interrogation of these populations will likely identify novel therapies which will specifically target the LSC. Disclosures Copland: Bristol-Myers Squibb: Consultancy, Honoraria, Other, Research Funding; Novartis: Consultancy, Honoraria, Other; Ariad: Consultancy, Honoraria, Research Funding.


2011 ◽  
Vol 30 (10) ◽  
pp. 751-761 ◽  
Author(s):  
Megan M. Multhaup ◽  
Sweta Gurram ◽  
Kelly M. Podetz-Pedersen ◽  
Andrea D. Karlen ◽  
Debra L. Swanson ◽  
...  

2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background:Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300(EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performedin silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolishedthe CSC phenotype by reducing ABCG2 expression, side population cells andtumorsphere formation capacityin vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells.TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion:We report a novel oncogenic role for EP300 in driving CSC phenotyperepresentinga potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3702-3702
Author(s):  
Samisubbu R Naidu ◽  
Maegan L. Capitano ◽  
Scott Cooper ◽  
Xinxin Huang ◽  
Hal E. Broxmeyer

Chromatin remodeling complexes facilitate gene expression and control cell fate decisions. The ATPase subunit of chromatin remodeling complex BRG1 is essential for stem cell function, but the role of its paralog Brm remains essentially unknown. To assess a role(s) for Brm in hematopoietic cell regulation in vivo, we studied hematopoietic stem (HSCs) and progenitor cells (HPCs) in bone marrow (BM) of Brm -/- vs. wildtype (WT) control mice. While BM from Brm -/- mice contain increased numbers of rigorously-defined phenotypic populations of long- and short-term repopulating HSCs and granulocyte macrophage progenitors (GMPs) and increased numbers and cycling status of functional HPC (assessed by CFU-GM, BFU-E, and CFU-GEMM colony assays), they were defective in self-renewal capacity upon in vivo serial transplantation using congenic mice (CD45.2+ donor cells, CD45.1+ competitor cells, and F1 (CD45.2+/CD45.1+) recipient mice). Increased numbers of HSCs from Brm-/- BM failed to show competitive advantage over wild type (WT) control BM cells in primary (1°) transplantation in lethally irradiated mice (based on month 4 donor cell chimerism and phenotypically defined HSC numbers). Moreover, 2° and 3° engraftment at 4 months post transplantation each, a measure of HSC self-renewal capacity, revealed much reduced engraftment of donor Brm -/- BM cell chimerism and HSC numbers compared to the extensive 2° and 3° engraftment of control WT BM. No significant differences in myeloid/lymphoid ratios were noted in 1° or 2° engrafted mice, suggesting no differentiation lineage bias of donor Brm -/- BM cells. This demonstrates a critical role for Brm in controlling in vivo self-renewal of mouse BM HSCs. Valine [(2S)-2 amino-3 methylbutanoic acid (C5H11N02)] is implicated in hematopoietic regulation, since depleting dietary valine permitted non-myeloablative mouse HSC transplantation (Taya et. al. Science 354:1152-1155, 2016). Metabolic analysis of lineage negative (lin-) cells demonstrated that valine, but not leucine, levels were very highly elevated in Brm -/- BM cells, thus linking intracellular valine levels with Brm expression. Exogenously added valine significantly increased basal oxygen consumption rates of both total WT BM and WT lin- cells, but not of total or lin-Brm -/- BM cells in vitro (via Seahorse machine analysis). To study effects of valine on HPCs, we assessed the addition of exogenously added valine on mouse BM and human cord blood (CB) cells cultured in the presence of cytokines with either non-dialyzed or dialyzed fetal bovine serum (FBS). Valine, but not leucine, dose-dependently enhanced HPC (CFU-GM, BFU-E, and CFU-GEMM) colony formation and secondary replating capacity of cytokine stimulated CFU-GM and CFU-GEMM derived colonies of normal mouse BM cells in vitro in presence of non-dialyzed FBS; additional enhanced valine effects were noted when dialyzed FBS (lacking valine and other amino acids) was used. Valine also enhanced mouse BM HPC survival in vitro in context of delayed addition of growth factors, and cytokine stimulated (SCF, FL, TPO) ex-vivo expansion of normal mouse BM HSCs and HPCs. Valine enhancement of the above noted functional mouse BM HPC assays in the presence of dialyzed FBS was also apparent with low density and CD34+ purified CB cells, demonstrating that valine effects are not species specific. Our results suggest that valine is an enhancing factor for HSC maintenance of self-renewal capacity and HPC proliferation, and that Brm gene expression limits intracellular valine levels, thereby controlling HSC self-renewal and HPC proliferation. This information is of potential use for future translation to modulate self-renewal of HSCs and survival and proliferation of HPCs for clinical advantage. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC. Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


2020 ◽  
Author(s):  
Alexander Ring ◽  
Pushpinder Kaur ◽  
Julie E. Lang

Abstract Background: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with basal features, lacking the expression of receptors targeted successfully in other breast cancer subtypes. Treatment response to adjuvant and neoadjuvant chemotherapy is often short-lived and metastatic spread occurs at higher rates than other subtypes within the first five years after diagnosis. TNBCs exhibit stem cell features and are enriched for cancer stem cell (CSC) populations. E1A Binding Protein P300 (EP300) is a large protein with multiple cellular functions, including as an effector in stem cell biology.Methods: We used a genetic knockdown (KD) model of EP300 in TNBC cell lines to investigate the effect on CSC phenotype, tumor growth and metastasis. Side population assay and tumorsphere suspension culture were used in vitro. Xenograft mouse models were used for in vivo studies. We performed in silico analysis of publicly available gene expression data sets to investigate CSC gene expression and molecular pathways as well as survival outcomes associated with EP300 expression in patients with TNBC and basal-like BC.Results: EP300 KD abolished the CSC phenotype by reducing ABCG2 expression, side population cells and tumorsphere formation capacity in vitro as well as tumor formation in a xenograft mouse model in vivo. Metastatic capacity was markedly reduced in EP300 KD cells in vivo, with no detection of circulating tumor cells. TCGA data analysis demonstrated that genes positively correlated with EP300 expression in TNBC and basal-like BC were associated with CSC biology. Survival analysis demonstrated that EP300 expression predicts poor recurrence free survival in TNBC and basal BC.Conclusion: We report a novel oncogenic role for EP300 in driving CSC phenotype representing a potential target to address tumor initiation and metastatic spread in TNBC and basal-like BC. EP300 might serve as a prognostic marker and potential therapeutic target in TNBC.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 408-414 ◽  
Author(s):  
CL Li ◽  
GR Johnson

The effects of stem cell factor (SCF) have been tested on a murine bone marrow subpopulation (RH123lo, Lin-, Ly6A/E+) that is highly enriched for long-term hematopoietic repopulating cells. SCF maintained cells from this population with long-term repopulating ability for up to 10 days in vitro. However, compared with freshly isolated cells, the level of engraftment in vivo by the cultured cells declined during the in vitro culture period, suggesting that SCF alone was unable to stimulate the self-renewal of long-term repopulating cells. By direct visualization of cultures, only small numbers of cells survived and rarely underwent cell division. However, SCF did directly stimulate proliferation of a population (Rh123med/hi,Lin-,Ly6A/E+) enriched for short-term repopulating cells. These data suggest that stem cell differentiation is associated with the development of mitogenic activity by SCF at least in some progenitor cell populations.


Sign in / Sign up

Export Citation Format

Share Document