scholarly journals E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation and dynamics

2019 ◽  
Author(s):  
James Chen ◽  
Saumya Gopalkrishnan ◽  
Courtney Chiu ◽  
Albert Y. Chen ◽  
Elizabeth A. Campbell ◽  
...  

AbstractTraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp. How TraR and its homologs regulate transcription is unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis of RNAP conformational heterogeneity revealed TraR-induced changes in RNAP dynamics. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the βlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
James Chen ◽  
Saumya Gopalkrishnan ◽  
Courtney Chiu ◽  
Albert Y Chen ◽  
Elizabeth A Campbell ◽  
...  

TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the βlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.


2019 ◽  
Vol 116 (38) ◽  
pp. 18923-18927 ◽  
Author(s):  
Alexis Jaramillo Cartagena ◽  
Amy B. Banta ◽  
Nikhil Sathyan ◽  
Wilma Ross ◽  
Richard L. Gourse ◽  
...  

In bacteria, a primary σ-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ-factors are negatively regulated by anti–σ-factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS-regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS2), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP β′-subunit that we call the β′-clamp-toe (β′CT). Deletion of the β′CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β′CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS2 and the β′CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung-Hoon Jun ◽  
Jaekyung Hyun ◽  
Jeong Seok Cha ◽  
Hoyoung Kim ◽  
Michael S. Bartlett ◽  
...  

AbstractOpening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.


2016 ◽  
Vol 113 (15) ◽  
pp. 4051-4056 ◽  
Author(s):  
Bin Liu ◽  
Yuhong Zuo ◽  
Thomas A. Steitz

In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3′-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E. coli transcription initiation complexes (TICs) containing the stress-responsive σS factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σS-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σS factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the −10 element. In addition, σS-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σS-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation.


2019 ◽  
Author(s):  
Alexis Jaramillo Cartagena ◽  
Amy B. Banta ◽  
Nikhil Sathyan ◽  
Wilma Ross ◽  
Richard L. Gourse ◽  
...  

AbstractIn bacteria, a primary σ factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ factors are negatively regulated by anti-σ factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS), the structure, along with p-benzoylphenylalanine crosslinking, reveals that Crl interacts with a structural element of the RNAP β’ subunit we call the β’-clamp-toe (β’CT). Deletion of the β’CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β’CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS and the β’CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.Significance StatementIn bacteria, multiple σ factors can bind to a common core RNA polymerase (RNAP) to alter global transcriptional programs in response to environmental stresses. Many γ-proteobacteria, including the pathogens Yersinia pestis, Vibrio cholera, Escherichia coli, and Salmonella typhimurium, encode Crl, a transcription factor that activates σS-dependent genes. Many of these genes are involved in processes important for infection, such as biofilm formation. We determined a high-resolution cryo-electron microscopy structure of a Crl-σS-RNAP transcription initiation complex. The structure, combined with biochemical experiments, shows that Crl stabilizes σS-RNAP by tethering σS directly to the RNAP.


Author(s):  
Raashi Sreenivasan ◽  
Irina A Shkel ◽  
Munish Chhabra ◽  
Amanda Drennan ◽  
Sara Heitkamp ◽  
...  

FRET (fluorescence energy transfer) between far-upstream (-100) and downstream (+14) cyanine dyes showed extensive bending/wrapping of λPR promoter DNA on E. coli RNA polymerase (RNAP) in closed and open complexes (CC, OC). Here we determine the kinetics and mechanism of DNA bending/wrapping by FRET and of formation of RNAP contacts with -100 and +14 DNA by single-dye fluorescence enhancements (PIFE). FRET/PIFE kinetics exhibit two phases: rapidly-reversible steps forming a CC ensemble ({CC} of four intermediates (initial (RPc), early (I1E), mid- (I1M), late (I1L)), followed by conversion of {CC} to OC via I1L. FRET and PIFE are first observed for I1E, not RPc. FRET/PIFE together reveal large-scale bending/wrapping of upstream and downstream DNA as RPc advances to I1E, reducing -100/+14 distance to 75 Å and making RNAP-DNA contacts at -100 and +14. We propose that far-upstream DNA wraps on the upper β′-clamp while downstream DNA contacts the top of the β-pincer in I1E. Converting I1E to I1M (~1s time-scale) reduces FRET efficiency with little change in -100/+14 PIFE, interpreted as clamp-opening that moves far-upstream DNA (on β′) away from downstream DNA (on β) to increase the -100/+14 distance by 14 Å. FRET increases greatly in converting I1M to I1L, indicating bending of downstream duplex DNA into the clamp and clamp-closing to reduce the -100/+14 distance by 21 Å. In the subsequent rate-determining DNA-opening step, in which the clamp may also open, I1L converts to the initial unstable OC (I2). Implications for facilitation of CC-to-OC isomerization by upstream DNA and upstream-binding, DNA-bending transcription activators are discussed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Juncao Xu ◽  
Kaijie Cui ◽  
Liqiang Shen ◽  
Jing Shi ◽  
Lingting Li ◽  
...  

σS is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of σS-mediated transcription requires a σS-specific activator, Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli σS-RNA polymerase (σS-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of σS (σS2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within σS2 to promote the assembly of the σS-RNAP holoenzyme and also to facilitate formation of an RNA polymerase–promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.


Sign in / Sign up

Export Citation Format

Share Document