scholarly journals Complexities of Microtubule Population Dynamics within the Mitotic Spindle

2019 ◽  
Author(s):  
Aaron R. Tipton ◽  
Gary J. Gorbsky

AbstractThe mitotic spindle functions to move chromosomes to alignment at metaphase, then segregate sister chromatids during anaphase. Analysis of spindle microtubule kinetics utilizing fluorescence dissipation after photoactivation described two main populations, a slow and a fast turnover population, historically taken to reflect kinetochore versus non-kinetochore microtubules respectively. This two component demarcation seems likely oversimplified. Microtubule turnover may vary among different spindle microtubules, regulated by spatial distribution and interactions with other microtubules and with organelles such as kinetochores, chromosome arms, and the cell cortex. How turnover among various spindle microtubules is differentially regulated and its significance remains unclear. We tested the concept of kinetochore versus non-kinetochore microtubules by disrupting kinetochores through depletion of the Ndc80 complex. In the absence of functional kinetochores, microtubule dynamics still exhibited slow and fast turnover populations, though proportions and timings of turnover were altered. Importantly, the data obtained following Hec1/Ndc80 depletion suggests other sub-populations, in addition to kinetochore microtubules, contribute to the slow turnover population. Further manipulation of spindle microtubules revealed a complex landscape. Dissection of the dynamics of microtubule populations will provide a greater understanding of mitotic spindle kinetics and insight into roles in facilitating chromosome attachment, movement, and segregation during mitosis.

2021 ◽  
Author(s):  
Aaron R. Tipton ◽  
Gary J. Gorbsky

The microtubules of the mitotic spindle mediate chromosome alignment to the metaphase plate, then sister chromatid segregation to the spindle poles in anaphase. Previous analyses of spindle microtubule kinetics utilizing fluorescence dissipation after photoactivation described two main populations, a slow and a fast turnover population, and these were ascribed to reflect kinetochore versus non-kinetochore microtubules, respectively. Here, we test this categorization by disrupting kinetochores through depletion of the Ndc80 complex. In the absence of functional kinetochores, microtubule dynamics still exhibit slow and fast turnover populations, though the proportion of each population and the timings of turnover are altered. Importantly, the data obtained following Hec1/Ndc80 depletion suggests other sub-populations, in addition to kinetochore microtubules, contribute to the slow turnover population. Further manipulation of spindle microtubules revealed a complex landscape. For example, while Aurora B kinase functions to destabilize kinetochore bound microtubules it may also stabilize certain slow turnover, non-kinetochore microtubules. Dissection of the dynamics of microtubule populations provides a greater understanding of mitotic spindle kinetics and insight into their roles in facilitating chromosome attachment, movement, and segregation during mitosis.


2014 ◽  
Vol 204 (6) ◽  
pp. 965-975 ◽  
Author(s):  
Rania S. Rizk ◽  
Katherine A. DiScipio ◽  
Kathleen G. Proudfoot ◽  
Mohan L. Gupta

Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.


2005 ◽  
Vol 168 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Wei-Lih Lee ◽  
Michelle A. Kaiser ◽  
John A. Cooper

During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.


2014 ◽  
Vol 205 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Mickael Machicoane ◽  
Cristina A. de Frutos ◽  
Jenny Fink ◽  
Murielle Rocancourt ◽  
Yannis Lombardi ◽  
...  

Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.


2008 ◽  
Vol 181 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Gohta Goshima ◽  
Mirjam Mayer ◽  
Nan Zhang ◽  
Nico Stuurman ◽  
Ronald D. Vale

Since the discovery of γ-tubulin, attention has focused on its involvement as a microtubule nucleator at the centrosome. However, mislocalization of γ-tubulin away from the centrosome does not inhibit mitotic spindle formation in Drosophila melanogaster, suggesting that a critical function for γ-tubulin might reside elsewhere. A previous RNA interference (RNAi) screen identified five genes (Dgt2–6) required for localizing γ-tubulin to spindle microtubules. We show that the Dgt proteins interact, forming a stable complex. We find that spindle microtubule generation is substantially reduced after knockdown of each Dgt protein by RNAi. Thus, the Dgt complex that we name “augmin” functions to increase microtubule number. Reduced spindle microtubule generation after augmin RNAi, particularly in the absence of functional centrosomes, has dramatic consequences on mitotic spindle formation and function, leading to reduced kinetochore fiber formation, chromosome misalignment, and spindle bipolarity defects. We also identify a functional human homologue of Dgt6. Our results suggest that an important mitotic function for γ-tubulin may lie within the spindle, where augmin and γ-tubulin function cooperatively to amplify the number of microtubules.


2009 ◽  
Vol 20 (6) ◽  
pp. 1639-1651 ◽  
Author(s):  
Rania S. Rizk ◽  
Kevin P. Bohannon ◽  
Laura A. Wetzel ◽  
James Powers ◽  
Sidney L. Shaw ◽  
...  

Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t1/2 of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t1/2 of K-fibers but no change in the t1/2 of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle.


2009 ◽  
Vol 187 (6) ◽  
pp. 757-759 ◽  
Author(s):  
Julie C. Canman

Division plane specification in animal cells has long been presumed to involve direct contact between microtubules of the anaphase mitotic spindle and the cell cortex. In this issue, von Dassow et al. (von Dassow et al. 2009. J. Cell. Biol. doi:10.1083/jcb.200907090) challenge this assumption by showing that spindle microtubules can effectively position the division plane at a distance from the cell cortex.


2015 ◽  
Vol 211 (5) ◽  
pp. 999-1009 ◽  
Author(s):  
Ami Ito ◽  
Gohta Goshima

Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker.


2015 ◽  
Vol 211 (5) ◽  
pp. 987-998 ◽  
Author(s):  
Todd Schoborg ◽  
Allison L. Zajac ◽  
Carey J. Fagerstrom ◽  
Rodrigo X. Guillen ◽  
Nasser M. Rusan

The interaction between centrosomes and mitotic spindle poles is important for efficient spindle formation, orientation, and cell polarity. However, our understanding of the dynamics of this relationship and implications for tissue homeostasis remains poorly understood. Here we report that Drosophila melanogaster calmodulin (CaM) regulates the ability of the microcephaly-associated protein, abnormal spindle (Asp), to cross-link spindle microtubules. Both proteins colocalize on spindles and move toward spindle poles, suggesting that they form a complex. Our binding and structure–function analysis support this hypothesis. Disruption of the Asp–CaM interaction alone leads to unfocused spindle poles and centrosome detachment. This behavior leads to randomly inherited centrosomes after neuroblast division. We further show that spindle polarity is maintained in neuroblasts despite centrosome detachment, with the poles remaining stably associated with the cell cortex. Finally, we provide evidence that CaM is required for Asp’s spindle function; however, it is completely dispensable for Asp’s role in microcephaly suppression.


Author(s):  
Conly L. Rieder ◽  
Stephen P. Alexander ◽  
John Hayden ◽  
Samuel S. Bowser

This abstract summarizes a number of recently published observations from this laboratory on the formation of the mitotic spindle (1-3), and on the dynamic behavior of spindle microtubules (4).Since chromosome movement during mitosis is, for the most part, directed towards a pole the emphasis of most mitosis research is to elucidate the molecular force-producing mechanism(s) behind this movement. Past studies reveal that poleward chromosome motion is dependent on the attachment of spindle microtubules (MTs) to the kinetochore of the chromosome. However, the origin of these MTs and their role in force production remain controversial. It is similarly unclear whether prometaphase and anaphase chromosomes are moved by the same, or a different, force-producing mechanism(s).The mitotic spindle of cultured newt (T. granulosa) pneumocytes forms in an optically clear region of cytoplasm defined by a cage of keratin filaments (1). As in other cell types possessing an astral spindle, chromosomes in newt pneumocytes that are positioned closer to one pole at nuclear envelope breakdown initially form a monopolar attachment to, and move towards, that pole.


Sign in / Sign up

Export Citation Format

Share Document