scholarly journals Diversity in CRISPR-based immunity protects susceptible genotypes by restricting phage spread and evolution

2019 ◽  
Author(s):  
Jack Common ◽  
David Walker-Sünderhauf ◽  
Stineke van Houte ◽  
Edze R Westra

AbstractDiversity in host resistance often associates with reduced pathogen spread. This may result from ecological and evolutionary processes, likely with feedback between them. Theory and experiments on bacteria-phage interactions have shown that genetic diversity of the bacterial adaptive immune system can limit phage evolution to overcome resistance. Using the CRISPR-Cas bacterial immune system and lytic phage, we engineered a host-pathogen system where each bacterial host genotype could be infected by only one phage genotype. With this model system, we explored how CRISPR diversity impacts the spread of phage when they can overcome a resistance allele, how immune diversity affects the evolution of the phage to increase its host range, and if there was feedback between these processes. We show that increasing CRISPR diversity benefits susceptible bacteria via a dilution effect, which limits the spread of the phage. We suggest that this ecological effect impacts the evolution of novel phage genotypes, which then feeds back into phage population dynamics.

2016 ◽  
Vol 75 (3) ◽  
pp. 74-84 ◽  
Author(s):  
A.E. Abaturov ◽  
◽  
E.A. Agafonova ◽  
N.I. Abaturova ◽  
V.L. Babich ◽  
...  

2021 ◽  
Vol 8 (8) ◽  
pp. 2004979
Author(s):  
Jun‐Young Park ◽  
Sung Jean Park ◽  
Jun Young Park ◽  
Sang‐Hyun Kim ◽  
Song Kwon ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Sonia George ◽  
Trevor Tyson ◽  
Nolwen L. Rey ◽  
Rachael Sheridan ◽  
Wouter Peelaerts ◽  
...  

Background: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α- synucleinopathies, such as Parkinson’s disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease. Objective To study the role of the adaptive immune system with respect to α-syn pathology. Methods: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. Results: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. Conclusion: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Alexander P. Hynes ◽  
Simon J. Labrie ◽  
Sylvain Moineau

ABSTRACT The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell’s “memory” of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural “memorization” process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. IMPORTANCE CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation.


2012 ◽  
Vol 10 (1) ◽  
pp. 201 ◽  
Author(s):  
Gezina TML Oei ◽  
Kirsten F Smit ◽  
Djai vd Vondervoort ◽  
Daniel Brevoord ◽  
Arjan Hoogendijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document