Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos

2019 ◽  
Author(s):  
Yang Wang ◽  
Peng Yuan ◽  
Zhiqiang Yan ◽  
Ming Yang ◽  
Ying Huo ◽  
...  

AbstractExtensive epigenetic reprogramming occurs during preimplantation embryo development and is accompanied by zygotic genome activation (ZGA) and first cell fate specification. Recent studies using single-cell epigenome sequencing techniques have provided global views of the dynamics of different epigenetic layers during this period. However, it remains largely unclear how the drastic epigenetic reprogramming contributes to transcriptional regulatory network. Here, we developed a single-cell multiomics sequencing technology (scNOMeRe-seq) that enables profiling of genome-wide chromatin accessibility, DNA methylation and RNA expression in the same individual cell with improved performance compared to that of earlier techniques. We applied this method to analyze the global dynamics of different molecular layers and their associations in mouse preimplantation embryos. We found that global DNA methylation remodeling facilitates the reconstruction of genetic lineages in early embryos and revealed that the gradual increases in heterogeneity among blastomeres are driven by asymmetric cleavage. Allele-specific DNA methylation pattern is maintained throughout preimplantation development and is accompanied by allele-specific associations between DNA methylation and gene expression in the gene body that are inherited from oocytes and sperm. Through integrated analyses of the collective dynamics between gene expression and chromatin accessibility, we constructed a ZGA-associated regulatory network and revealed coordination among multiple epigenetic layers, transcription factors (TFs) and repeat elements that instruct the proper ZGA process. Moreover, we found that inner cell mass (ICM)/trophectoderm (TE) lineage-associated cis-regulatory elements are stepwise activated in blastomeres during post-ZGA embryo stages. TE lineage-specific TFs play dual roles in promoting the TE program while repressing the ICM program, thereby separating the TE lineage from the ICM lineage. Taken together, our findings not only depict the first single-cell triple-omics map of chromatin accessibility, DNA methylation and RNA expression during mouse preimplantation development but also enhance the fundamental understanding of epigenetic regulation in early embryos.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Wang ◽  
Peng Yuan ◽  
Zhiqiang Yan ◽  
Ming Yang ◽  
Ying Huo ◽  
...  

AbstractExtensive epigenetic reprogramming occurs during preimplantation embryo development. However, it remains largely unclear how the drastic epigenetic reprogramming contributes to transcriptional regulatory network during this period. Here, we develop a single-cell multiomics sequencing technology (scNOMeRe-seq) that enables profiling of genome-wide chromatin accessibility, DNA methylation and RNA expression in the same individual cell. We apply this method to depict a single-cell multiomics map of mouse preimplantation development. We find that genome-wide DNA methylation remodeling facilitates the reconstruction of genetic lineages in early embryos. Further, we construct a zygotic genome activation (ZGA)-associated regulatory network and reveal coordination among multiple epigenetic layers, transcription factors and repeat elements that instruct proper ZGA. Cell fates associated cis-regulatory elements are activated stepwise in post-ZGA stages. Trophectoderm (TE)-specific transcription factors play dual roles in promoting the TE program while repressing the inner cell mass (ICM) program during the ICM/TE separation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Giancarlo Bonora ◽  
Vijay Ramani ◽  
Ritambhara Singh ◽  
He Fang ◽  
Dana L. Jackson ◽  
...  

Abstract Background Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. Results Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a “bookmark” mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. Conclusions Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


2021 ◽  
Author(s):  
Xiaotong Wu ◽  
Hongmei Zhang ◽  
Bingjie Zhang ◽  
Yu Zhang ◽  
Qiuyan Wang ◽  
...  

Drastic epigenetic reprogramming is essential to convert terminally-differentiated gametes to totipotent embryos. However, it remains puzzling why post-fertilization global DNA reprogramming occurs only in mammals but not in non-mammalian vertebrates. In zebrafish, global methylome inheritance is however accompanied by sweeping enhancer "dememorization" as they become fully methylated. By depleting maternal dnmt1 using oocyte microinjection in situ, we eliminated DNA methylation in zebrafish early embryos, which died around gastrulation with severe differentiation defects. Strikingly, methylation deficiency leads to extensive derepression of adult tissue-specific genes and CG-rich enhancers, which acquire ectopic TF binding and, unexpectedly, H3K4me3. By contrast, embryonic enhancers are generally CG-poor and evade DNA methylation repression. Hence, global DNA hypermethylation inheritance coupled with enhancer dememorization installs an epigenetic gate that safeguards embryonic programs and ensures temporally ordered gene expression. We propose that "enhancer dememorization" underlies and unifies distinct epigenetic reprogramming modes in early development between mammals and non-mammals.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950035
Author(s):  
Huiqing Wang ◽  
Yuanyuan Lian ◽  
Chun Li ◽  
Yue Ma ◽  
Zhiliang Yan ◽  
...  

As a tool of interpreting and analyzing genetic data, gene regulatory network (GRN) could reveal regulatory relationships between genes, proteins, and small molecules, as well as understand physiological activities and functions within biological cells, interact in pathways, and how to make changes in the organism. Traditional GRN research focuses on the analysis of the regulatory relationships through the average of cellular gene expressions. These methods are difficult to identify the cell heterogeneity of gene expression. Existing methods for inferring GRN using single-cell transcriptional data lack expression information when genes reach steady state, and the high dimensionality of single-cell data leads to high temporal and spatial complexity of the algorithm. In order to solve the problem in traditional GRN inference methods, including the lack of cellular heterogeneity information, single-cell data complexity and lack of steady-state information, we propose a method for GRN inference using single-cell transcription and gene knockout data, called SINgle-cell transcription data-KNOckout data (SIN-KNO), which focuses on combining dynamic and steady-state information of regulatory relationship contained in gene expression. Capturing cell heterogeneity information could help understand the gene expression difference in different cells. So, we could observe gene expression changes more accurately. Gene knockout data could observe the gene expression levels at steady-state of all other genes when one gene is knockout. Classifying the genes before analyzing the single-cell data could determine a large number of non-existent regulation, greatly reducing the number of regulation required for inference. In order to show the efficiency, the proposed method has been compared with several typical methods in this area including GENIE3, JUMP3, and SINCERITIES. The results of the evaluation indicate that the proposed method can analyze the diversified information contained in the two types of data, establish a more accurate gene regulation network, and improve the computational efficiency. The method provides a new thinking for dealing with large datasets and high computational complexity of single-cell data in the GRN inference.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay7246 ◽  
Author(s):  
Zhiyuan Chen ◽  
Qiangzong Yin ◽  
Azusa Inoue ◽  
Chunxia Zhang ◽  
Yi Zhang

Faithful maintenance of genomic imprinting is essential for mammalian development. While germline DNA methylation–dependent (canonical) imprinting is relatively stable during development, the recently found oocyte-derived H3K27me3-mediated noncanonical imprinting is mostly transient in early embryos, with some genes important for placental development maintaining imprinted expression in the extraembryonic lineage. How these noncanonical imprinted genes maintain their extraembryonic-specific imprinting is unknown. Here, we report that maintenance of noncanonical imprinting requires maternal allele–specific de novo DNA methylation [i.e., somatic differentially methylated regions (DMRs)] at implantation. The somatic DMRs are located at the gene promoters, with paternal allele–specific H3K4me3 established during preimplantation development. Genetic manipulation revealed that both maternal EED and zygotic DNMT3A/3B are required for establishing somatic DMRs and maintaining noncanonical imprinting. Thus, our study not only reveals the mechanism underlying noncanonical imprinting maintenance but also sheds light on how histone modifications in oocytes may shape somatic DMRs in postimplantation embryos.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 575-575
Author(s):  
Alexandra M Poos ◽  
Jan-Philipp Mallm ◽  
Stephan M Tirier ◽  
Nicola Casiraghi ◽  
Hana Susak ◽  
...  

Introduction: Multiple myeloma (MM) is a heterogeneous malignancy of clonal plasma cells that accumulate in the bone marrow (BM). Despite new treatment approaches, in most patients resistant subclones are selected by therapy, resulting in the development of refractory disease. While the subclonal architecture in newly diagnosed patients has been investigated in great detail, intra-tumor heterogeneity in relapsed/refractory (RR) MM is poorly characterized. Recent technological and computational advances provide the opportunity to systematically analyze tumor samples at single-cell (sc) level with high accuracy and througput. Here, we present a pilot study for an integrative analysis of sc Assay for Transposase-Accessible Chromatin with high-throughput sequencing (scATAC-seq) and scRNA-seq with the aim to comprehensively study the regulatory landscape, gene expression, and evolution of individual subclones in RRMM patients. Methods: We have included 20 RRMM patients with longitudinally collected paired BM samples. scATAC- and scRNA-seq data were generated using the 10X Genomics platform. Pre-processing of the sc-seq data was performed with the CellRanger software (reference genome GRCh38). For downstream analyses the R-packages Seurat and Signac (Satija Lab) as well as Cicero (Trapnell Lab) were used. For all patients bulk whole genome sequencing (WGS) data was available, which we used for confirmatory studies of intra-tumor heterogeneity. Results: A comprehensive study at the sc level requires extensive quality controls (QC). All scATAC-seq files passed the QC, including the detected number of cells, number of fragments in peaks or the ratio of mononucleosomal to nucleosome-free fragments. Yet, unsupervised clustering of the differentially accessible regions resulted in two main clusters, strongly associated with sample processing time. Delay of sample processing by 1-2 days, e.g. due to shipment from participating centers, resulted in global change of chromatin accessibility with more than 10,000 regions showing differences compared to directly processed samples. The corresponding scRNA-seq files also consistently failed QC, including detectable genes per cell and the percentage of mitochondrial RNA. We excluded these samples from the study. Analysing scATAC-seq data, we observed distinct clusters before and after treatment of RRMM, indicating clonal adaptation or selection in all samples. Treatment with carfilzomib resulted in highly increased co-accessibility and >100 genes were differentially accessible upon treatment. These genes are related to the activation of immune cells (including T-, and B-cells), cell-cell adhesion, apoptosis and signaling pathways (e.g. NFκB) and include several chaperone proteins (e.g. HSPH1) which were upregulated in the scRNA-seq data upon proteasome inhibition. The power of our comprehensive approach for detection of individual subclones and their evolution is exemplarily illustrated in a patient who was treated with a MEK inhibitor and achieved complete remission. This patient showed two main clusters in the scATAC-seq data before treatment, suggesting presence of two subclones. Using copy number profiles based on WGS and scRNA-seq data and performing a trajectory analysis based on scATAC-seq data, we could confirm two different subclones. At relapse, a seemingly independent dominant clone emerged. Upon comprehensive integration of the datasets, one of the initial subclones could be identified as the precursor of this dominant clone. We observed increased accessibility for 108 regions (e.g. JUND, HSPA5, EGR1, FOSB, ETS1, FOXP2) upon MEK inhibition. The most significant differentially accessible region in this clone and its precursor included the gene coding for krüppel-like factor 2 (KLF2). scRNA-seq data showed overexpression of KLF2 in the MEK-inhibitor resistant clone, confirming KLF2 scATAC-seq data. KLF2 has been reported to play an essential role together with KDM3A and IRF1 for MM cell survival and adhesion to stromal cells in the BM. Conclusions: Our data strongly suggest to use only immediately processed samples for single cell technologies. Integrating scATAC- and scRNA-seq together with bulk WGS data showed that detection of individual clones and longitudinal changes in the activity of cis-regulatory regions and gene expression is feasible and informative in RRMM. Disclosures Goldschmidt: John-Hopkins University: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; John-Hopkins University: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; MSD: Research Funding; Molecular Partners: Research Funding; Dietmar-Hopp-Stiftung: Research Funding; Janssen: Consultancy, Research Funding; Chugai: Honoraria, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Adaptive Biotechnology: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document