scholarly journals In vitro Efficacy of Novel Glucan Synthase Inhibitor, Ibrexafungerp (SCY-078), Against Multidrug- and Pan-resistant Candida auris Isolates from the Outbreak in New York

2019 ◽  
Author(s):  
Yan Chun Zhu ◽  
Stephen A. Barat ◽  
Katyna Borroto-Esoda ◽  
David Angulo ◽  
Sudha Chaturvedi ◽  
...  

AbstractWe report low MIC50 of Ibrexafungerp (SCY-078) for 102 Candida auris clinical and surveillance isolates from outbreak in New York. The group included C. auris with a variable resistance to antifungal drugs. Five pan-resistant C. auris isolates were susceptible to Ibrexafungerp with low MIC50 range of 0.12-1 µg/ml.

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Brittany O’Brien ◽  
Sudha Chaturvedi ◽  
Vishnu Chaturvedi

ABSTRACT Since 2016, New York hospitals and health care facilities have faced an unprecedented outbreak of the pathogenic yeast Candida auris. We tested over 1,000 C. auris isolates from affected facilities and found high resistance to fluconazole (MIC > 256 mg/liter) and variable resistance to other antifungal drugs. Therefore, we tested if two-drug combinations are effective in vitro against multidrug-resistant C. auris. Broth microdilution antifungal combination plates were custom manufactured by TREK Diagnostic System. We used 100% inhibition endpoints for the drug combination as reported earlier for the intra- and interlaboratory agreements against Candida species. The results were derived from 12,960 readings, for 15 C. auris isolates tested against 864 two-drug antifungal combinations for nine antifungal drugs. Flucytosine (5FC) at 1.0 mg/liter potentiated the most combinations. For nine C. auris isolates resistant to amphotericin B (AMB; MIC ≥ 2.0 mg/liter), AMB-5FC (0.25/1.0 mg/liter) yielded 100% inhibition. Six C. auris isolates resistant to three echinocandins (anidulafungin [AFG], MIC ≥ 4.0 mg/liter; caspofungin [CAS], MIC ≥ 2.0 mg/liter; and micafungin [MFG], MIC ≥ 4.0 mg/liter) were 100% inhibited by AFG-5FC and CAS-5FC (0.0078/1 mg/liter) and MFG-5FC (0.12/1 mg/liter). None of the combinations were effective for C. auris 18-1 and 18-13 (fluconazole [FLC] > 256 mg/liter, 5FC > 32 mg/liter) except MFG-5FC (0.1/0.06 mg/liter). Thirteen isolates with a high voriconazole (VRC) MIC (>2 mg/liter) were 100% inhibited by the VRC-5FC (0.015/1 mg/liter). The simplified two-drug combination susceptibility test format would permit laboratories to provide clinicians and public health experts with additional data to manage multidrug-resistant C. auris.


2020 ◽  
Vol 64 (11) ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACT An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


2020 ◽  
Author(s):  
YanChun Zhu ◽  
Shannon Kilburn ◽  
Mili Kapoor ◽  
Sudha Chaturvedi ◽  
Karen Joy Shaw ◽  
...  

ABSTRACTAn ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are pan-resistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug, fosmanogepix, is currently in Phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90 0.03 mg/L; range 0.004-0.06 mg/L). The MGX epidemiological cutoff value (ECV, 99% cutoff) for the tested C. auris isolates was 0.06 mg/L. MGX was 8-32-fold more active than the echinocandins, 16-64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators’ MIC50, MIC90, or GEOMEAN values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris pan-resistant isolates was 0.008-0.015 mg/L, and the median and mode MIC values were 0.015 mg/L, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


2015 ◽  
Vol 59 (7) ◽  
pp. 4308-4311 ◽  
Author(s):  
Frédéric Lamoth ◽  
Barbara D. Alexander

ABSTRACTThe limited armamentarium of active and oral antifungal drugs against emerging non-Aspergillusmolds is of particular concern. Current antifungal agents and the new orally available beta-1,3-d-glucan synthase inhibitor SCY-078 were testedin vitroagainst 135 clinical non-Aspergillusmold isolates. Akin to echinocandins, SCY-078 showed no or poor activity againstMucoromycotinaandFusariumspp. However, SCY-078 was highly active againstPaecilomyces variotiiand was the only compound displaying some activity against notoriously panresistantScedosporium prolificans.


2019 ◽  
Author(s):  
Brittany O’Brien ◽  
Sudha Chaturvedi ◽  
Vishnu Chaturvedi

AbstractSince 2016, New York hospitals and healthcare facilities have faced an unprecedented outbreak of pathogenic yeast Candida auris. We tested over one thousand C. auris isolates from affected facilities and found high-resistance to fluconazole (FLC, MIC50>256 mg/L), and variable resistance to other antifungal drugs. Therefore, we evaluated if two-drug combinations are effective in vitro against multidrug-resistant C. auris. Broth micro-dilution (BMD) plates were custom-designed, and quality controlled by TREK Diagnostic System. We used MIC100 endpoints for the drug combination readings as reported earlier for the intra- and inter-laboratory agreements against Candida species and Aspergillus fumigatus. The study results were derived from 12,960 MIC100 readings, for fifteen C. auris isolates tested against 864 possible two-drug antifungal combinations for nine antifungal drugs. Flucytosine (5FC) at 1.0 mg/L potentiated the most successful combinations with other drugs. Micafungin (MFG), Anidulafungin (AFG), Caspofungin (CAS) at individual concentrations of 0.25 mg/L in combination with 5FC (1.0 mg/L) yielded MIC100 for 14, 13, and 12 of 15 C. auris test isolates. AMB / 5FC (0.25/1.0 mg/L) yielded MIC100 for 13 isolates. None of the combinations were effective for C. auris 18-1, which tested resistant against FLC and 5FC, except POS/5FC (0.12/1.0 mg/L). The simplified two-drug combination susceptibility test format would permit laboratories to provide clinicians and public health experts with additional data to deal with multidrug-resistant C. auris.


2020 ◽  
Vol 55 (4) ◽  
pp. 105922
Author(s):  
Y.C. Zhu ◽  
S.A. Barat ◽  
K. Borroto-Esoda ◽  
D. Angulo ◽  
S. Chaturvedi ◽  
...  

Author(s):  
Brittany O’Brien ◽  
Jiali Liang ◽  
Sudha Chaturvedi ◽  
Jonathan L. Jacobs ◽  
Vishnu Chaturvedi

AbstractFour pan-resistant Candia auris strains from New York outbreak were 100% inhibited in vitro by combinations of two antifungal drugs using fixed concentrations achievable in vivo. Pan-resistant C. auris strains have mutations in eleven gene targets associated with major antifungal drugs, and constituted a distinct sub-cluster among NY strains.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Natalie S. Nunnally ◽  
Kizee A. Etienne ◽  
David Angulo ◽  
Shawn R. Lockhart ◽  
Elizabeth L. Berkow

ABSTRACT Ibrexafungerp is a first-in-class glucan synthase inhibitor. In vitro activity was determined for 89 Candida glabrata isolates with molecularly identified FKS1 or FKS2 mutations conferring resistance to the echinocandins. All isolates were resistant to at least one echinocandin (i.e., anidulafungin, caspofungin, or micafungin) by broth microdilution. Results for ibrexafungerp were compared with those for each echinocandin. Ibrexafungerp had good activity against all echinocandin-resistant C. glabrata isolates.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 355
Author(s):  
Unai Caballero ◽  
Sarah Kim ◽  
Elena Eraso ◽  
Guillermo Quindós ◽  
Valvanera Vozmediano ◽  
...  

Candida auris is an emergent fungal pathogen that causes severe infectious outbreaks globally. The public health concern when dealing with this pathogen is mainly due to reduced susceptibility to current antifungal drugs. A valuable alternative to overcome this problem is to investigate the efficacy of combination therapy. The aim of this study was to determine the in vitro interactions of isavuconazole with echinocandins against C. auris. Interactions were determined using a checkerboard method, and absorbance data were analyzed with different approaches: the fractional inhibitory concentration index (FICI), Greco universal response surface approach, and Bliss interaction model. All models were in accordance and showed that combinations of isavuconazole with echinocandins resulted in an overall synergistic interaction. A wide range of concentrations within the therapeutic range were selected to perform time-kill curves. These confirmed that isavuconazole–echinocandin combinations were more effective than monotherapy regimens. Synergism and fungistatic activity were achieved with combinations that included isavuconazole in low concentrations (≥0.125 mg/L) and ≥1 mg/L of echinocandin. Time-kill curves revealed that once synergy was achieved, combinations of higher drug concentrations did not improve the antifungal activity. This work launches promising results regarding the combination of isavuconazole with echinocandins for the treatment of C. auris infections.


Sign in / Sign up

Export Citation Format

Share Document