scholarly journals Ant cuticular hydrocarbons are heritable and associated with variation in colony productivity

2019 ◽  
Author(s):  
Justin Walsh ◽  
Luigi Pontieri ◽  
Patrizia d’Ettorre ◽  
Timothy A. Linksvayer

AbstractIn social insects, cuticular hydrocarbons function in nestmate recognition and also provide a waxy barrier against desiccation, but basic evolutionary genetic features, including the heritability of hydrocarbon profiles and how they are shaped by natural selection are largely unknown. We used a new pharaoh ant (Monomorium pharaonis) laboratory mapping population to estimate the heritability of individual cuticular hydrocarbons, genetic correlations between hydrocarbons, and fitness consequences of phenotypic variation in the hydrocarbons. Individual hydrocarbons had low to moderate estimated heritability, indicating that some compounds provide more information about genetic relatedness and can also better respond to natural selection. Strong genetic correlations between compounds are likely to constrain independent evolutionary trajectories, which is expected given that many hydrocarbons share biosynthetic pathways. Variation in cuticular hydrocarbons was associated with variation in colony productivity, with some hydrocarbons experiencing strong directional selection. Altogether, our study builds on our knowledge of the genetic architecture of the social insect hydrocarbon profile and demonstrates that hydrocarbon variation is shaped by natural selection.

2020 ◽  
Vol 287 (1928) ◽  
pp. 20201029 ◽  
Author(s):  
Justin Walsh ◽  
Luigi Pontieri ◽  
Patrizia d'Ettorre ◽  
Timothy A. Linksvayer

In social insects, cuticular hydrocarbons function in nest-mate recognition and also provide a waxy barrier against desiccation, but basic evolutionary features, including the heritability of hydrocarbon profiles and how they are shaped by natural selection are largely unknown. We used a new pharaoh ant ( Monomorium pharaonis ) laboratory mapping population to estimate the heritability of individual cuticular hydrocarbons, genetic correlations between hydrocarbons, and fitness consequences of phenotypic variation in the hydrocarbons. Individual hydrocarbons had low to moderate estimated heritability, indicating that some compounds provide more information about genetic relatedness and can also better respond to natural selection. Strong genetic correlations between compounds are likely to constrain independent evolutionary trajectories, which is expected, given that many hydrocarbons share biosynthetic pathways. Variation in cuticular hydrocarbons was associated with variation in colony productivity, with some hydrocarbons experiencing strong directional selection. Altogether, this study builds on our knowledge of the genetic architecture of the social insect hydrocarbon profile and indicates that hydrocarbon variation is shaped by natural selection.


2019 ◽  
Author(s):  
Justin T. Walsh ◽  
Simon Garnier ◽  
Timothy A. Linksvayer

AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences -- the two prerequisites for evolution by natural selection -- is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration) as well as body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and the body size of new workers, queens, and males. Moreover, variation among colonies in collective behaviors was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kensuke Okada ◽  
Masako Katsuki ◽  
Manmohan D. Sharma ◽  
Katsuya Kiyose ◽  
Tomokazu Seko ◽  
...  

AbstractTheory shows how sexual selection can exaggerate male traits beyond naturally selected optima and also how natural selection can ultimately halt trait elaboration. Empirical evidence supports this theory, but to our knowledge, there have been no experimental evolution studies directly testing this logic, and little examination of possible associated effects on female fitness. Here we use experimental evolution of replicate populations of broad-horned flour beetles to test for effects of sex-specific predation on an exaggerated sexually selected male trait (the mandibles), while also testing for effects on female lifetime reproductive success. We find that populations subjected to male-specific predation evolve smaller sexually selected mandibles and this indirectly increases female fitness, seemingly through intersexual genetic correlations we document. Predation solely on females has no effects. Our findings support fundamental theory, but also reveal unforseen outcomes—the indirect effect on females—when natural selection targets sex-limited sexually selected characters.


The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Corinne Rabouam ◽  
Vincent Bretagnolle ◽  
Yves Bigot ◽  
Georges Periquet

Abstract We used DNA fingerprinting to assess genetic structure of populations in Cory's Shearwater (Calonectris diomedea). We analyzed mates and parent-offspring relationships, as well as the amount and distribution of genetic variation within and among populations, from the level of subcolony to subspecies. We found no evidence of extrapair fertilization, confirming that the genetic breeding system matches the social system that has been observed in the species. Mates were closely related, and the level of genetic relatedness within populations was within the range usually found in inbred populations. In contrast to previous studies based on allozymes and mtDNA polymorphism, DNA fingerprinting using microsatellites revealed consistent levels of genetic differentiation among populations. However, analyzing the two subspecies separately revealed that the pattern of genetic variation among populations did not support the model of isolation by distance. Natal dispersal, as well as historic and/or demographic events, probably contributed to shape the genetic structure of populations in the species.


Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 785-807 ◽  
Author(s):  
Ladislav Naďo ◽  
Renáta Chromá ◽  
Peter Kaňuch

Social groups of bats that operate under fission–fusion dynamics tend to establish and maintain non-random associations. We examined the social and genetic structure of the Leisler’s bat (Nyctalus leisleri), a species that is typical of tree-dwelling and long-distance migratory species in Europe. We used long-term co-occurrence data (capture-recapture sampling of roosting individuals) in combination with individual genetic relatedness (inferred from a set of microsatellite markers) to assess relationships between structural, temporal and genetic properties of roosting groups. Our results showed that social structure in groups of roosting Leisler’s bat was not random. Social clusters revealed by network analysis were almost identical to demographic cohorts, which indicates that Leisler’s bats are able to maintain social bonds only over a single season. After the period of active maternal care, roosting groups became smaller with a significantly higher level of genetic relatedness among adult females in contrast to the pregnancy and lactation stages. This provides some evidence that temporal social associations may be positively correlated with genetic relatedness. Low recapture rates of bats across seasons in light of natal philopatry indicates a shorter life span of individuals likely due to high mortality during long distance migratory movements. This probably has the most significant effect on the social system of this species.


2011 ◽  
Vol 366 (1566) ◽  
pp. 785-792 ◽  
Author(s):  
Jeremy Kendal ◽  
Jamshid J. Tehrani ◽  
John Odling-Smee

Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance , comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. Human niche construction modifies selection pressures in environments in ways that affect both human evolution, and the evolution of other species. Human ecological inheritance is exceptionally potent because it includes the social transmission and inheritance of cultural knowledge, and material culture. Human genetic inheritance in combination with human cultural inheritance thus provides a basis for gene–culture coevolution, and multivariate dynamics in cultural evolution. Niche construction theory potentially integrates the biological and social aspects of the human sciences. We elaborate on these processes, and provide brief introductions to each of the papers published in this theme issue.


2018 ◽  
Author(s):  
Cristine Legare ◽  
John Opfer ◽  
Justin Busch ◽  
Andrew Shtulman

The theory of evolution by natural selection has begun to revolutionize our understanding of perception, cognition, language, social behavior, and cultural practices. Despite the centrality of evolutionary theory to the social sciences, many students, teachers, and even scientists struggle to understand how natural selection works. Our goal is to provide a field guide for social scientists on teaching evolution, based on research in cognitive psychology, developmental psychology, and education. We synthesize what is known about the psychological obstacles to understanding evolution, methods for assessing evolution understanding, and pedagogical strategies for improving evolution understanding. We review what is known about teaching evolution about nonhuman species and then explore implications of these findings for the teaching of evolution about humans. By leveraging our knowledge of how to teach evolution in general, we hope to motivate and equip social scientists to begin teaching evolution in the context of their own field.


2019 ◽  
Vol 30 (4) ◽  
pp. 948-959 ◽  
Author(s):  
Fernando Diaz-Aguirre ◽  
Guido J Parra ◽  
Cecilia Passadore ◽  
Luciana Möller

AbstractSocial relationships represent an adaptive behavioral strategy that can provide fitness benefits to individuals. Within mammalian societies, delphinids are known to form diverse grouping patterns and show a variety of social systems. However, how ecological and intrinsic factors have shaped the evolution of such diverse societies is still not well understood. In this study, we used photo-identification data and biopsy samples collected between March 2013 and October 2015 in Coffin Bay, a heterogeneous environment in South Australia, to investigate the social structure of southern Australian bottlenose dolphins (Tursiops cf. australis). Based on the data from 657 groups of dolphins, we used generalized affiliation indices, and applied social network and modularity methods to study affiliation patterns among individuals and investigate the potential presence of social communities within the population. In addition, we investigated genetic relatedness and kinship relationships within and between the communities identified. Modularity analysis revealed that the Coffin Bay population is structured into 2 similar sized, mixed-sex communities which differed in ranging patterns, affiliation levels and network metrics. Lagged association rates also indicated that nonrandom affiliations persisted over the study period. The genetic analyses suggested that there was higher relatedness, and a higher proportion of inferred full-sibs and half-sibs, within than between communities. We propose that differences in environmental conditions between the bays and kinship relationships are important factors contributing to the delineation and maintenance of this social structure.


2019 ◽  
Vol 286 (1917) ◽  
pp. 20191993 ◽  
Author(s):  
Mark Dyble ◽  
Thomas M. Houslay ◽  
Marta B. Manser ◽  
Tim Clutton-Brock

Violent conflicts between groups have been observed among many species of group living mammals and can have important fitness consequences, with individuals being injured or killed and with losing groups surrendering territory. Here, we explore between-group conflict among meerkats ( Suricata suricatta ), a highly social and cooperatively breeding mongoose. We show that interactions between meerkat groups are frequently aggressive and sometimes escalate to fighting and lethal violence and that these interactions have consequences for group territories, with losing groups moving to sleeping burrows closer to the centre of their territories following an intergroup interaction and with winning groups moving further away. We find that larger groups and groups with pups are significantly more likely to win contests, but that the location of the contest, adult sex ratio, and mean within-group genetic relatedness do not predict contest outcome. Our results suggest that intergroup competition may be a major selective force among meerkats, reinforcing the success of large groups and increasing the vulnerability of small groups to extinction. The presence of both within-group cooperation and between-group hostility in meerkats make them a valuable point of comparison in attempts to understand the ecological and evolutionary roots of human warfare.


2020 ◽  
Author(s):  
Renan F Moura ◽  
Everton Tizo-Pedroso ◽  
Kleber Del-Claro

Abstract Complex social insect species exhibit task specialization mediated by morphological and behavioral traits. However, evidence of such traits is scarce for other social arthropods. We investigated whether the social pseudoscorpion Paratemnoides nidificator exhibits morphologically and behaviorally specialized individuals in prey capture. We measured body and chela sizes of adult pseudoscorpions and analyzed predation processes. Larger individuals spent more time moving through the colony and foraging than smaller pseudoscorpions. Individuals that captured prey had increased body and absolute chelae sizes. Although larger individuals had relatively small chelae size, they showed a higher probability of prey capture. Larger individuals manipulated prey often, although they fed less than smaller pseudoscorpions. Individuals that initiated captures fed more frequently and for more time than the others. Natural selection might be favoring individuals specialized in foraging and colony protection, allowing smaller and less efficient adults to avoid contact with dangerous prey. To our knowledge, there is incipient information regarding specialized individuals in arachnids, and our results might indicate the emergence of a morphologically specialized group in this species.


Sign in / Sign up

Export Citation Format

Share Document