scholarly journals DG-CA3 circuitry mediates hippocampal representations of latent information

2019 ◽  
Author(s):  
Alexandra T. Keinath ◽  
Andres Nieto-posadas ◽  
Jennifer C. Robinson ◽  
Mark P. Brandon

AbstractSurvival in complex environments necessitates a flexible navigation system that incorporates memory of recent behavior and associations. Yet, how the hippocampal spatial circuit represents latent information independent of sensory inputs and future goals has not been determined. To address this, we imaged the activity of large ensembles in subregion CA1 via wide-field fluorescent microscopy during a novel behavioral paradigm. Our results demonstrated that latent information is represented through reliable firing rate changes during unconstrained navigation. We then hypothesized that the representation of latent information in CA1 is mediated by pattern separation/completion processes instantiated upstream within the dentate gyrus (DG) and CA3 subregions. Indeed, CA3 ensemble recordings revealed an analogous code for latent information. Moreover, selective chemogenetic inactivation of DG-CA3 circuitry completely and reversibly abolished the CA1 representation of latent information. These results reveal a causal and specific role of DG-CA3 circuitry in the maintenance of latent information within the hippocampus.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhong Li ◽  
Jin-Xing Wei ◽  
Guang-Wei Zhang ◽  
Junxiang J. Huang ◽  
Brian Zingg ◽  
...  

AbstractAnimals exhibit innate defense behaviors in response to approaching threats cued by the dynamics of sensory inputs of various modalities. The underlying neural circuits have been mostly studied in the visual system, but remain unclear for other modalities. Here, by utilizing sounds with increasing (vs. decreasing) loudness to mimic looming (vs. receding) objects, we find that looming sounds elicit stereotypical sequential defensive reactions: freezing followed by flight. Both behaviors require the activity of auditory cortex, in particular the sustained type of responses, but are differentially mediated by corticostriatal projections primarily innervating D2 neurons in the tail of the striatum and corticocollicular projections to the superior colliculus, respectively. The behavioral transition from freezing to flight can be attributed to the differential temporal dynamics of the striatal and collicular neurons in their responses to looming sound stimuli. Our results reveal an essential role of the striatum in the innate defense control.


2021 ◽  
pp. 1-12
Author(s):  
Yongwei Tang ◽  
Huijuan Hao ◽  
Jun Zhou ◽  
Yuexiang Lin ◽  
Zhenzhen Dong

AGV (Automated Guided Vehicle) technology has attracted increasing attention. Precise control of AGV position and attitude information in complex operating environment is a key part of smart factories. With outdoor AGV as a platform, this study uses BDS/INS combined navigation system combining Beidou positioning system and inertial navigation system and takes the velocity and position difference between BDS and INS as a model. An integrated navigation method is proposed to improve bee colony algorithm and optimize the BP neural network-assisted Kalman filtering to achieve accurate positioning. Moreover, the optimization of BP neural network navigation using INS navigation, network-assisted navigation and bee colony algorithm is simulated. Results demonstrate that the integrated navigation algorithm has effectiveness and feasibility, and can solve the problems of BDS misalignment and large INS navigation error in complex environments.


2012 ◽  
Vol 108 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Yann Thibaudier ◽  
Marie-France Hurteau

Propriospinal pathways are thought to be critical for quadrupedal coordination by coupling cervical and lumbar central pattern generators (CPGs). However, the mechanisms involved in relaying information between girdles remain largely unexplored. Using an in vitro spinal cord preparation in neonatal rats, Juvin and colleagues ( Juvin et al. 2012 ) have recently shown sensory inputs from the hindlimbs have greater influence on forelimb CPGs than forelimb sensory inputs on hindlimb CPGs, in other words, a bottom-up control system. However, results from decerebrate cats suggest a top-down control system. It may be that both bottom-up and top-down control systems exist and that the dominance of one over the other is task or context dependent. As such, the role of sensory inputs in controlling quadrupedal coordination before and after injury requires further investigation.


2001 ◽  
Vol 85 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Holger G. Krapp ◽  
Roland Hengstenberg ◽  
Martin Egelhaaf

Integrating binocular motion information tunes wide-field direction-selective neurons in the fly optic lobe to respond preferentially to specific optic flow fields. This is shown by measuring the local preferred directions (LPDs) and local motion sensitivities (LMSs) at many positions within the receptive fields of three types of anatomically identifiable lobula plate tangential neurons: the three horizontal system (HS) neurons, the two centrifugal horizontal (CH) neurons, and three heterolateral connecting elements. The latter impart to two of the HS and to both CH neurons a sensitivity to motion from the contralateral visual field. Thus in two HS neurons and both CH neurons, the response field comprises part of the ipsi- and contralateral visual hemispheres. The distributions of LPDs within the binocular response fields of each neuron show marked similarities to the optic flow fields created by particular types of self-movements of the fly. Based on the characteristic distributions of local preferred directions and motion sensitivities within the response fields, the functional role of the respective neurons in the context of behaviorally relevant processing of visual wide-field motion is discussed.


1983 ◽  
Vol 50 (3) ◽  
pp. 658-670 ◽  
Author(s):  
A. D. McClellan

The buccal mass of the gastropod Pleurobranchaea is used during a regurgitation response that consists of a writhing phase interrupted by brief periodic bouts of a vomiting phase (17, 20). During transitions from writhing to vomiting, specific changes occur in the motor pattern (19, 20). Evidence is presented suggesting that at least some of the initiation or "command" neurons for vomiting reside in the buccal ganglia. The present paper examines the role of two candidate vomiting-initiation cells, the ventral white cells (VWC) and midganglionic cells (MC), in the buccal ganglia of isolated nervous systems. Stimulation of single VWCs activates a vomiting motor pattern, consisting in part of alternating buccal root activity. Furthermore, the VWCs fire in high-frequency bursts during episodes (i.e., bouts) of this same vomiting pattern. Mutual reexcitation between the VWCs and motor pattern generator (MPG) appears to produce the accelerated buildup and maintenance of vomiting rhythms. Brief stimulation of single MCs "triggers" bouts of a vomiting motor pattern, but the membrane potential of this cell is only modulated during this same pattern, at least in the isolated nervous system. It is proposed that in intact animals the MCs are activated by sensory inputs and briefly excite the VWC-MPG network, thereby turning on the mutual reexcitatory mechanism mentioned above and switching the output pattern. A general implication for gastropod research is that higher order neurons that activate buccal root activity cannot automatically be given the function of "feeding command neuron," as some cells clearly control other responses, such as vomiting.


2018 ◽  
Vol 619 ◽  
pp. A48 ◽  
Author(s):  
J. F. Radcliffe ◽  
M. A. Garrett ◽  
T. W. B. Muxlow ◽  
R. J. Beswick ◽  
P. D. Barthel ◽  
...  

Context. The occurrence of active galactic nuclei (AGN) is critical to our understanding of galaxy evolution and formation. Radio observations provide a crucial, dust-independent tool to study the role of AGN. However, conventional radio surveys of deep fields ordinarily have arc-second scale resolutions often insufficient to reliably separate radio emission in distant galaxies originating from star-formation and AGN-related activity. Very long baseline interferometry (VLBI) can offer a solution by identifying only the most compact radio emitting regions in galaxies at cosmological distances where the high brightness temperatures (in excess of 105 K) can only be reliably attributed to AGN activity. Aims. We present the first in a series of papers exploring the faint compact radio population using a new wide-field VLBI survey of the GOODS-N field. This will expand upon previous surveys, permitting the characterisation of the faint, compact radio source population in the GOODS-N field. The unparalleled sensitivity of the European VLBI Network (EVN) will probe a luminosity range rarely seen in deep wide-field VLBI observations, thus providing insights into the role of AGN to radio luminosities of the order 1022 WHz−1 across cosmic time. Methods. The newest VLBI techniques are used to completely cover an entire 7′̣5 radius area to milliarcsecond resolutions, while bright radio sources (S > 0.1 mJy) are targeted up to 25′ from the pointing centre. Multi-source self-calibration, and a primary beam model for the EVN array are used to correct for residual phase errors and primary beam attenuation respectively. Results. This paper presents the largest catalogue of VLBI detected sources in GOODS-N comprising of 31 compact radio sources across a redshift range of 0.11–3.44, almost three times more than previous VLBI surveys in this field. We provide a machine-readable catalogue and introduce the radio properties of the detected sources using complementary data from the e-MERLIN Galaxy Evolution survey (eMERGE).


2018 ◽  
Author(s):  
John J. Sakon ◽  
Wendy A. Suzuki

AbstractThe CA3 and dentate gyrus (DG) regions of the hippocampus are considered key for disambiguating sensory inputs from similar experiences in memory, a process termed pattern separation. The neural mechanisms underlying pattern separation, however, have been difficult to compare across species: rodents offer robust recording methods with less human-centric tasks while humans provide complex behavior with less recording potential. To overcome these limitations, we trained monkeys to perform a visual pattern separation task similar to those used in humans while recording activity from single CA3/DG neurons. We find that when animals discriminate recently seen novel images from similar (lure) images, behavior indicative of pattern separation, CA3/DG neurons respond to lure images more like novel than repeat images. Using a population of these neurons, we are able to classify novel, lure, and repeat images from each other using this pattern of firing rates. Notably, one subpopulation of these neurons is more responsible for distinguishing lures and repeats—the key discrimination indicative of pattern separation.


2019 ◽  
Author(s):  
Muneefah A. Alenezi ◽  
Tariq M. Butt ◽  
Daniel C. Eastwood

ABSTRACTMicroRNAs (miRNAs) play an important role in regulating gene expression and are involved in developmental processes in animals, plants and fungi. To understand the role of miRNAs in a biological system, it is important to optimise the extraction procedures to obtain high quality and quantity nucleic acid that enable high throughput sequencing and expression analysis. Numerous kit-based miRNA extraction protocols have been optimised generally to single cell or tissue cultures. Fungi, however, often occupy physically and chemically complex environments which miRNA make extraction challenging, such as fungal pathogens interacting within plant or animal host tissue. We used aGalleria mellonella(wax moth) larvae and entomopathogenic fungusMetarhizium brunneum ARSEF 4556host/pathogen model to compare commercially available miRNA extraction kits (Invitrogen PureLink™ miRNA Isolation Kit, Ambion mirVana™miRNA Isolation Kit and Norgen microRNA purification Kit). Our results showed reproducible and significant differences in miRNAs extraction between the kits, with the Invitrogen PureLink™ miRNA Isolation protocol demonstrating the best performance in terms of miRNA quantity, quality and integrity isolated from fungus-infected insect tissue.


Sign in / Sign up

Export Citation Format

Share Document