scholarly journals Stathmin-2 Mediates Glucagon Secretion from Pancreatic α-Cells

2019 ◽  
Author(s):  
Farzad Asadi ◽  
Savita Dhanvantari

AbstractInhibition of glucagon hypersecretion from pancreatic α-cells is an appealing strategy for the treatment of diabetes. Our hypothesis is that proteins that associate with glucagon within alpha cell secretory granules will regulate glucagon secretion, and may provide druggable targets for controlling abnormal glucagon secretion in diabetes. Recently, we identified a dynamic glucagon interactome within the secretory granules of the α cell line, αTC1-6, and showed that select proteins within the interactome could modulate glucagon secretion. In the present study, we show that one of these interactome proteins, the neuronal protein stathmin-2, is expressed in aTC1-6 cells and in mouse pancreatic alpha cells, and is a novel regulator of glucagon secretion. Stathmin-2 was co-secreted with glucagon in response to 55 mM K+, and immunofluorescence confocal microscopy showed co-localization of stathmin-2 with glucagon and the secretory granule markers chromogranin A and VAMP-2 in αTC1-6 cells. In mouse pancreatic islets, Stathmin-2 co-localized with glucagon, but not with insulin, indicating that it is an alpha cell protein. To show a function for stathmin-2 in regulating glucagon secretion, we showed that siRNA - mediated depletion of stathmin-2 in aTC1-6 cells caused glucagon secretion to become constitutive without any effect on proglucagon mRNA levels, while overexpression of stathmin-2 completely abolished both basal and K+-stimulated glucagon secretion. Overexpression of stathmin-2 increased the localization of glucagon into the endosomal-lysosomal compartment, while depletion of stathmin-2 reduced the endosomal localization of glucagon. Therefore, we describe stathmin-2 as having a novel role as an alpha cell secretory granule protein that modulates glucagon secretion via trafficking through the endosomal-lysosomal system. These findings describe a potential new pathway for the regulation of glucagon secretion, and may have implications for controlling glucagon hypersecretion in diabetes.

2021 ◽  
Author(s):  
Farzad Asadi ◽  
Savita Dhanvantari

Glucagon hypersecretion from the pancreatic α-cell is a characteristic sign of diabetes, which exacerbates fasting hyperglycemia. Thus, targeting glucagon secretion from α-cells may be a promising approach for combating hyperglucagonemia. We have recently identified stathmin-2 as a protein that resides in α-cell secretory granules, and showed that it regulates glucagon secretion by directing glucagon towards the endolysosomal system in αTC1-6 cells. Here, we hypothesized that disruption of Stmn2-mediated trafficking of glucagon to the endolysosomes contributes to hyperglucagonemia. In isolated islets from male mice treated with streptozotocin (STZ) to induce diabetes, Arg-stimulated secretion of glucagon and Stmn2 was augmented. However, cell glucagon content was significantly increased (p<0.001), but Stmn2 levels were reduced (p<0.01) in STZ-treated mice, as measured by both ELISA and immunofluorescence intensity. Expression of Gcg mRNA increased ~4.5 times, while Stmn2 mRNA levels did not change. Using confocal immunofluorescence microscopy, the colocalization of glucagon and Stmn2 in Lamp2A+ lysosomes was dramatically reduced (p<0.001) in islets from diabetic mice, and the colocalization of Stmn2, but not glucagon, with the late endosome marker, Rab7, significantly (p<0.01) increased. Further studies were conducted in αTC1-6 cells cultured in media containing high glucose (16.7 mM) for two weeks to mimic glucagon hypersecretion of diabetes. Surprisingly, treatment of αTC1-6 cells with the lysosomal inhibitor bafilomycin A1 reduced K+-induced glucagon secretion, suggesting that high glucose may induce glucagon secretion from another lysosomal compartment. Both glucagon and Stmn2 co-localized with Lamp1, which marks secretory lysosomes, in cells cultured in high glucose. We propose that, in addition to enhanced trafficking and secretion through the regulated secretory pathway, the hyperglucagonemia of diabetes may also be due to re-routing of glucagon from the degradative Lamp2A+ lysosome towards the secretory Lamp1+ lysosome.


2018 ◽  
Author(s):  
Farzad Asadi ◽  
Savita Dhanvantari

AbstractGlucagon is stored within secretory granules of pancreatic alpha cells until a stimulus, such as a change in microenvironmental conditions, triggers its release. We hypothesized that the secretory response of the alpha cell to various stimuli could be determined by plasticity in the network of proteins that interact with glucagon within alpha cell secretory granules. To answer this question, we isolated secretory granules from alpha TC1-6 cells and identified glucagon-interacting proteins by affinity purification coupled with liquid chromatography/tandem mass spectrometry. Proteomic analyses revealed a network of cytoplasmic and histone proteins. Specifically, the interaction between glucagon and histone H4 and the ER stress protein GRP78 was confirmed through co-immunoprecipitation of secretory granule lysates, and co-localization within secretory granules using high-resolution confocal microscopy. The composition of these networks was altered at different glucose levels (25 mM vs 5.5 mM) and in response to the paracrine inhibitors of glucagon secretion, GABA and insulin. Finally, siRNA-mediated silencing of a subset of nonhistone proteins revealed novel proteins that may regulate glucagon secretion. We have therefore described a novel and dynamic glucagon interactome within alpha cell secretory granules, and suggest that plasticity in the interactome governs the alpha cell secretory response to paracrine and nutritional stimuli.


2009 ◽  
Vol 202 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Kikuko Hotta ◽  
Masahiro Hosaka ◽  
Atsushi Tanabe ◽  
Toshiyuki Takeuchi

Functional variations in the secretogranin III (SCG3) gene are associated with susceptibility to obesity. SCG3 forms secretory granules with orexin, melanin-concentrating hormone (MCH), neuropeptide Y (NPY), and POMC in the hypothalamus. In this study, we screened proteins for SCG3-binding activity and identified secretogranin II (SCG2) using a yeast two-hybrid system. Immunoprecipitation revealed that SCG2 interacts with SCG3. In situ hybridization and immunohistochemistry indicated that SCG2 was highly expressed in the lateral hypothalamic area, paraventricular nucleus, and arcuate nucleus of the hypothalamus. Double-labeling immunohistochemical analysis demonstrated that SCG2 was expressed in orexin-, MCH-, NPY-, and POMC-expressing neurons. SCG2 was also coexpressed with SCG3. Upon introduction into neuroblastoma cells, SCG2 was expressed in the cytosol and formed granule-like structures with SCG3, orexin, NPY, or POMC. SCG3 bound to POMC; however, it did not bind to orexin, MCH, or NPY. By contrast, SCG2 formed aggregates with orexin, MCH, NPY, and POMC. SCG2 may act as a hormone carrier for orexin, MCH, NPY, and POMC by binding with SCG3, which targets proteins to the secretory granules. SCG2 mRNA levels increased along with those of SCG3, orexin, MCH, and NPY after a 24-h fast, suggesting that the SCG2/SCG3 system may respond in an adaptive manner to acute body weight changes. However, this SCG2/SCG3 system appears to be unresponsive to chronic body weight changes, such as diet-induced obesity or obesity in ob/ob mice. We suggest that SCG2, as well as SCG3, may be a potential regulator of food intake based on its capacity to accumulate appetite-related hormones into secretory granules.


1991 ◽  
Vol 260 (2) ◽  
pp. F185-F191 ◽  
Author(s):  
S. H. Ayo ◽  
R. A. Radnik ◽  
W. F. Glass ◽  
J. A. Garoni ◽  
E. R. Rampt ◽  
...  

Nodular expansion of glomerular mesangium with increased amounts of extracellular matrix (ECM) material is pathognomic of diabetic nephropathy. The precise mechanisms involved in this accumulation are unknown. Recently, we reported using a solid-phase enzyme-linked immunosorbent assay (ELISA) technique that glomerular mesangial cells, the principal cell type residing in glomerular mesangium, accumulate 50–60% more fibronectin (FN), laminin (LM), and type IV collagen (T-IV) when cultured in medium containing high glucose (30 mM) (S. H. Ayo, R. A. Rodnik, J. Garoni, W. F. Glass II, and J. I. Kreiberg. Am. J. Pathol. 136: 1339-1348, 1990). ECM assembly is controlled by its rate of synthesis and degradation, as well as its binding and rate of incorporation into the ECM. To elucidate the mechanisms involved, pulse-chase experiments were designed to estimate ECM protein synthesis from the incorporation of Trans-35S [( 35S]methionine, [35S]cysteine) into immunoprecipitated FN, LM, and T-IV. mRNA levels were examined, and degradation rates were estimated from the disappearance of radioactivity from matrix proteins in mesangial cells previously incubated with Trans-35S. One week of growth in 30 mM glucose resulted in approximately 40–50% increase in the synthesis of all three matrix proteins compared with 10 mM glucose-grown cells. This was accompanied by a significant increase in the transcripts for all three matrix proteins (approximately twofold). The specific activity of the radiolabel in trichloroacetic acid-precipitable cell protein showed no difference between cells grown in 10 or 30 mM glucose, indicating that total protein synthesis was unchanged. After 1 wk, the rate of FN, LM, and T-IV collagen degradation was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Du ◽  
Maoge Zhou ◽  
Wei Zhao ◽  
Dongwan Cheng ◽  
Lifen Wang ◽  
...  

Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800139 ◽  
Author(s):  
Gaya P Yadav ◽  
Hui Zheng ◽  
Qing Yang ◽  
Lauren G Douma ◽  
Linda B Bloom ◽  
...  

Regulated secretion is an intracellular pathway that is highly conserved from protists to humans. Granin family proteins were proposed to participate in the biogenesis, maturation and release of secretory granules in this pathway. However, the exact molecular mechanisms underlying the intracellular functions of the granin family proteins remain unclear. Here, we show that chromogranin B (CHGB), a secretory granule protein, inserts itself into membrane and forms a chloride-conducting channel. CHGB interacts strongly with phospholipid membranes through two amphipathic α helices. At a high local concentration, CHGB insertion in membrane causes significant bilayer remodeling, producing protein-coated nanoparticles and nanotubules. Fast kinetics and high cooperativity for anion efflux from CHGB vesicles suggest that CHGB tetramerizes to form a functional channel with a single-channel conductance of ∼125 pS (150/150 mM Cl−). The CHGB channel is sensitive to an anion channel blocker and exhibits higher anion selectivity than the other six known families of Cl−channels. Our data suggest that the CHGB subfamily of granin proteins forms a new family of organelle chloride channels.


2021 ◽  
Author(s):  
Sarah D Neuman ◽  
Annika R Lee ◽  
Jane E Selegue ◽  
Amy T Cavanagh ◽  
Arash Bashirullah

Regulated exocytosis is an essential process whereby professional secretory cells synthesize and secrete specific cargo proteins in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi Network (TGN); after budding from the TGN, granules undergo many modifications, including a dramatic increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here we leverage the professional secretory cells of the Drosophila larval salivary glands as a model system to characterize a novel and unexpected role for Rab GTPases during secretory granule maturation. We find that secretory granules in the larval salivary glands increase in size ~300-fold between biogenesis and release, and loss of Rab1 or Rab11 dramatically reduces granule size. Surprisingly, we find that Rab1 and Rab11 protein localize to secretory granule membranes. Rab11 associates with granule membranes throughout the maturation process, and Rab11 is required for recruitment of Rab1. In turn, Rab1 associates specifically with immature secretory granules and drives granule growth. In addition to their roles in granule growth, both Rab1 and Rab11 appear to have additional roles during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new and unexpected role for Rab GTPases in secretory granule maturation.


1981 ◽  
Vol 90 (2) ◽  
pp. 474-484 ◽  
Author(s):  
R D Broadwell ◽  
C Oliver

The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.


Sign in / Sign up

Export Citation Format

Share Document