scholarly journals The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells

2015 ◽  
Vol 29 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Francesca Froldi ◽  
Milan Szuperak ◽  
Chen-Fang Weng ◽  
Wei Shi ◽  
Anthony T. Papenfuss ◽  
...  
Author(s):  
Srivathsa S. Magadi ◽  
Chrysanthi Voutyraki ◽  
Gerasimos Anagnostopoulos ◽  
Evanthia Zacharioudaki ◽  
Ioanna K. Poutakidou ◽  
...  

ABSTRACTNeural stem cells divide during embryogenesis and post embryonic development to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that in every asymmetric cell division progenitors send a Delta-Notch signal back to their sibling stem cells. Here we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. Our results suggest that Notch signalling sets up a network of mutually repressing stemness and anti-stemness transcription factors, which include Hes proteins and Zfh1, respectively. This mutual repression ensures robust transition to neuronal and glial differentiation and its perturbation can lead to malignant transformation.


Cell Reports ◽  
2020 ◽  
Vol 33 (7) ◽  
pp. 108394
Author(s):  
Suihong Huang ◽  
Ming Ho Choi ◽  
Hao Huang ◽  
Xin Wang ◽  
Yu Chen Chang ◽  
...  

2002 ◽  
Vol 333 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Myung Ae Lee ◽  
Hye-Souk Lee ◽  
Hyun Soo Lee ◽  
Kyung G. Cho ◽  
Byung Kwan Jin ◽  
...  

EMBO Reports ◽  
2015 ◽  
Vol 16 (9) ◽  
pp. 1177-1191 ◽  
Author(s):  
Tapan Kumar Mistri ◽  
Arun George Devasia ◽  
Lee Thean Chu ◽  
Wei Ping Ng ◽  
Florian Halbritter ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009371
Author(s):  
Rui Chen ◽  
Yanjun Hou ◽  
Marisa Connell ◽  
Sijun Zhu

In order to boost the number and diversity of neurons generated from neural stem cells, intermediate neural progenitors (INPs) need to maintain their homeostasis by avoiding both dedifferentiation and premature differentiation. Elucidating how INPs maintain homeostasis is critical for understanding the generation of brain complexity and various neurological diseases resulting from defects in INP development. Here we report that Six4 expressed in Drosophila type II neuroblast (NB) lineages prevents the generation of supernumerary type II NBs and premature differentiation of INPs. We show that loss of Six4 leads to supernumerary type II NBs likely due to dedifferentiation of immature INPs (imINPs). We provide data to further demonstrate that Six4 inhibits the expression and activity of PntP1 in imINPs in part by forming a trimeric complex with Earmuff and PntP1. Furthermore, knockdown of Six4 exacerbates the loss of INPs resulting from the loss of PntP1 by enhancing ectopic Prospero expression in imINPs, suggesting that Six4 is also required for preventing premature differentiation of INPs. Taken together, our work identified a novel transcription factor that likely plays important roles in maintaining INP homeostasis.


2013 ◽  
Vol 450 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Ruopeng Feng ◽  
Shixin Zhou ◽  
Yinan Liu ◽  
Daijun Song ◽  
Zhilin Luan ◽  
...  

The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is essential for the regulation of self-renewal and homoeostasis of NSCs (neural stem cells) during brain development. However, the downstream targets of Sox2 and its underlying molecular mechanism are largely unknown. In the present study, we found that Sox2 directly up-regulates the expression of survivin, which inhibits the mitochondria-dependent apoptotic pathway in NSCs. Although overexpression of Sox2 elevates survivin expression, knockdown of Sox2 results in a decrease in survivin expression, thereby initiating the mitochondria-dependent apoptosis related to caspase 9 activation. Furthermore, cell apoptosis owing to knockdown of Sox2 can be rescued by ectopically expressing survivin in NSCs as well as in the mouse brain, as demonstrated by an in utero-injection approach. In short, we have found a novel Sox2/survivin pathway that regulates NSC survival and homoeostasis, thus revealing a new mechanism of brain development, neurological degeneration and such aging-related disorders.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
You Ning ◽  
Jianhua Huang ◽  
Bill Kalionis ◽  
Qin Bian ◽  
Jingcheng Dong ◽  
...  

Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2′-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document