scholarly journals Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
You Ning ◽  
Jianhua Huang ◽  
Bill Kalionis ◽  
Qin Bian ◽  
Jingcheng Dong ◽  
...  

Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2′-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
You Ning ◽  
Jian-Hua Huang ◽  
Shi-Jin Xia ◽  
Qin Bian ◽  
Yang Chen ◽  
...  

Adult neural stem cells (NSCs) persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS) injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit ofPsoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nan Zhao ◽  
Fei Wang ◽  
Shaheen Ahmed ◽  
Kan Liu ◽  
Chi Zhang ◽  
...  

Targeting androgen receptor (AR) has been shown to be promising in treating glioblastoma (GBM) in cell culture and flank implant models but the mechanisms remain unclear. AR antagonists including enzalutamide are available for treating prostate cancer patients in clinic and can pass the blood–brain barrier, thus are potentially good candidates for GBM treatment but have not been tested in GBM orthotopically. Our current studies confirmed that in patients, a majority of GBM tumors overexpress AR in both genders. Enzalutamide inhibited the proliferation of GBM cells both in vitro and in vivo. Although confocal microscopy demonstrated that AR is expressed but not specifically in glioma cancer stem cells (CSCs) (CD133+), enzalutamide treatment significantly decreased CSC population in cultured monolayer cells and spheroids, suppressed tumor sphere-forming capacity of GBM cells, and downregulated CSC gene expression at mRNA and protein levels in a dose- and time-dependent manner. We have, for the first time, demonstrated that enzalutamide treatment decreased the density of CSCs in vivo and improved survival in an orthotopic GBM mouse model. We conclude that AR antagonists potently target glioma CSCs in addition to suppressing the overall proliferation of GBM cells as a mechanism supporting their repurposing for clinical applications treating GBM.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1532-1540 ◽  
Author(s):  
Anne Florin ◽  
Magali Maire ◽  
Aline Bozec ◽  
Ali Hellani ◽  
Sonia Chater ◽  
...  

In the present study we investigated whether fetal exposure to flutamide affected messenger and protein levels of claudin-11, a key Sertoli cell factor in the establishment of the hemotesticular barrier, at the time of two key events of postnatal testis development: 1) before puberty (postnatal d 14) during the establishment of the hemotesticular barrier, and 2) at the adult age (postnatal d 90) at the time of full spermatogenesis. The data obtained show that claudin-11 expression was inhibited in prepubertal rat testes exposed in utero to 2 and 10 mg/kg·d flutamide. However, in adult testes, the inhibition was observed only with 2, and not with 10, mg/kg·d of the antiandrogen. It is shown here that these differences between prepubertal and adult testes could be related to dual and opposed regulation of claudin-11 expression resulting from positive control by androgens and an inhibitory effect of postmeiotic germ cells. Indeed, testosterone is shown to stimulate claudin-11 expression in cultured Sertoli cells in a dose- and time-dependent manner (maximum effect with 0.06 μm after 72 h of treatment). In contrast, postmeiotic germ cells potentially exert a negative effect on claudin-11 expression, because adult rat testes depleted in spermatids (after local irradiation) displayed increased claudin-11 expression, whereas in a model of cocultured Sertoli and germ cells, spermatids, but not spermatocytes, inhibited claudin-11 expression. The apparent absence of claudin-11 expression changes in adult rat testes exposed to 10 mg/kg·d flutamide therefore could result from the antagonistic effects of 1) the inhibitory action of the antiandrogen and 2) the stimulatory effect of the apoptotic germ cells on claudin-11 expression. Together, due to the key role of claudin-11 in the hemotesticular barrier, the present findings suggest that such regulatory mechanisms may potentially affect this barrier (re)modeling during spermatogenesis.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 181 ◽  
Author(s):  
Wang Liao ◽  
Yuqiu Zheng ◽  
Wenli Fang ◽  
Shaowei Liao ◽  
Ying Xiong ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease with limited treatment options and no cure. Beta-amyloid (Aβ) is a hallmark of AD that has potent neurotoxicity in neural stem cells (NSCs). Dual specificity phosphatase 6 (DUSP6) is a member of the mitogen-activated protein kinases (MAPKs), which is involved in regulating various physiological and pathological processes. Whether DUSP6 has a protective effect on Aβ-induced NSC injury remains to be explored. C17.2 neural stem cells were transfected with DUSP6-overexpressed plasmid. NSCs with or without DUSP6 overexpression were administrated with Aβ25–35 at various concentrations (i.e., 0, 2.5, 5 μM). DUSP6 expression after Aβ treatment was detected by Real-Time Polymerase Chain Reaction (RT-PCR) and Western blot and cell vitality was examined by the CCK8 assay. The oxidative stress (intracellular reactive oxygen species (ROS) and malondialdehyde (MDA)), endoplasmic reticulum stress (ER calcium level) and mitochondrial dysfunction (cytochrome c homeostasis) were tested. The expression of p-ERK1/2 and ERK1/2 were assayed by Western blot. Our results showed that Aβ decreased the expression of DUSP6 in a dose-dependent manner. The overexpression of DUSP6 increased the cell vitality of NSCs after Aβ treatment. Oxidative stress, ER stress, and mitochondrial dysfunction induced by Aβ could be restored by DUSP6 overexpression. Additionally, the Aβ-induced ERK1/2 activation was reversed. In summary, DUSP6 might have a neuroprotective effect on Aβ-induced cytotoxicity, probably via ERK1/2 activation.


Author(s):  
Srivathsa S. Magadi ◽  
Chrysanthi Voutyraki ◽  
Gerasimos Anagnostopoulos ◽  
Evanthia Zacharioudaki ◽  
Ioanna K. Poutakidou ◽  
...  

ABSTRACTNeural stem cells divide during embryogenesis and post embryonic development to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that in every asymmetric cell division progenitors send a Delta-Notch signal back to their sibling stem cells. Here we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. Our results suggest that Notch signalling sets up a network of mutually repressing stemness and anti-stemness transcription factors, which include Hes proteins and Zfh1, respectively. This mutual repression ensures robust transition to neuronal and glial differentiation and its perturbation can lead to malignant transformation.


2017 ◽  
Vol 660 ◽  
pp. 147-154 ◽  
Author(s):  
Sadegh Salarinasab ◽  
AliReza Nourazarian ◽  
Masoud Nikanfar ◽  
Nima Abdyazdani ◽  
Masoumeh Kazemi ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 33 (7) ◽  
pp. 108394
Author(s):  
Suihong Huang ◽  
Ming Ho Choi ◽  
Hao Huang ◽  
Xin Wang ◽  
Yu Chen Chang ◽  
...  

2014 ◽  
Vol 17 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Ji-Seon Lee ◽  
Jeong-Rak Park ◽  
Ok-Seon Kwon ◽  
Tae-Hee Lee ◽  
Ichiro Nakano ◽  
...  

2002 ◽  
Vol 333 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Myung Ae Lee ◽  
Hye-Souk Lee ◽  
Hyun Soo Lee ◽  
Kyung G. Cho ◽  
Byung Kwan Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document