scholarly journals Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex

2007 ◽  
Vol 14 (3) ◽  
pp. 117-125 ◽  
Author(s):  
T. Nagai ◽  
K. Takuma ◽  
H. Kamei ◽  
Y. Ito ◽  
N. Nakamichi ◽  
...  
2020 ◽  
Vol 117 (4) ◽  
pp. 2133-2139
Author(s):  
Nathaniel C. Noyes ◽  
Erica Walkinshaw ◽  
Ronald L. Davis

Long-lasting, consolidated memories require not only positive biological processes that facilitate long-term memories (LTM) but also the suppression of inhibitory processes that prevent them. The mushroom body neurons (MBn) in Drosophila melanogaster store protein synthesis-dependent LTM (PSD-LTM) as well as protein synthesis-independent, anesthesia-resistant memory (ARM). The formation of ARM inhibits PSD-LTM but the underlying molecular processes that mediate this interaction remain unknown. Here, we demonstrate that the Ras→Raf→rho kinase (ROCK) pathway in MBn suppresses ARM consolidation, allowing the formation of PSD-LTM. Our initial results revealed that the effects of Ras on memory are due to postacquisition processes. Ras knockdown enhanced memory expression but had no effect on acquisition. Additionally, increasing Ras activity optogenetically after, but not before, acquisition impaired memory performance. The elevated memory produced by Ras knockdown is a result of increased ARM. While Ras knockdown enhanced the consolidation of ARM, it eliminated PSD-LTM. We found that these effects are mediated by the downstream kinase Raf. Similar to Ras, knockdown of Raf enhanced ARM consolidation and impaired PSD-LTM. Surprisingly, knockdown of the canonical downstream extracellular signal-regulated kinase did not reproduce the phenotypes observed with Ras and Raf knockdown. Rather, Ras/Raf inhibition of ROCK was found to be responsible for suppressing ARM. Constitutively active ROCK enhanced ARM and impaired PSD-LTM, while decreasing ROCK activity rescued the enhanced ARM produced by Ras knockdown. We conclude that MBn Ras/Raf inhibition of ROCK suppresses the consolidation of ARM, which permits the formation of PSD-LTM.


2005 ◽  
Vol 68 (2) ◽  
pp. 421-429 ◽  
Author(s):  
Vincent Pascoli ◽  
Emmanuel Valjent ◽  
Anne-Gaëlle Corbillé ◽  
Jean-Christophe Corvol ◽  
Jean-Pol Tassin ◽  
...  

2021 ◽  
Vol 20 (2) ◽  
pp. 253-258
Author(s):  
Xiaomin Huang ◽  
Miao Huo

As an alternative to the use of narcotics, generally refractory to long-term effectiveness, for the management of neuropathic pain, we have explored the utility of senkyunolide I. Senkyunolide I is one of the bioactive components isolated from Ligusticum chuanxiong Hort known to exhibit multiple biological activities. In this study, we report senkyunolide I inhibition of chronic constriction injury induced neuropathic pain. Mechanistically, senkyunolide I inhibited chronic constriction injury induced apoptosis and the activity of microglia via extracellular signal regulated kinase pathway. We therefore suggest that senkyunolide I could serve as a promising drug for the treatment of neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document