Inelastic scattering of electrons by metastable helium: First Born and Glauber cross sections for2S3−3S3excitation

1978 ◽  
Vol 17 (2) ◽  
pp. 513-522 ◽  
Author(s):  
G. A. Khayrallah ◽  
S. T. Chen ◽  
J. R. Rumble
Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


The methods by which neutron diffraction and inelastic scattering may be used to study the structure and dynamics of solutions are reviewed, with particular reference to solutions of amphiphile and biological molecules in water. Neutron methods have particular power because the scattering lengths for protons and deuterons are of opposite sign, and hence there exists the possibility of obtaining variable contrast between the scattering of the aqueous medium and the molecules in it. In addition, the contrast variation method is also applicable to inelastic scattering studies whereby the dynamics of one component of the solution can be preferentially studied due to large and variable differences in the scattering cross sections. Both applications of contrast variation are illustrated with examples of amphiphile-water lamellar mesophases, diffraction from collagen, viruses, and polymer solutions. Inelastic scattering observations and the dynamics of water between the lamellar sheets allow microscopic measurements of the water diffusion along and perpendicular to the layers. The information obtained is complementary to that from nuclear magnetic resonance and electron spin resonance studies of diffusion.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


Sign in / Sign up

Export Citation Format

Share Document