longitudinal momentum
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
shisheng Zhang ◽  
Shiyi Zhong ◽  
Bo Shao ◽  
Michael Smith

Abstract Using a Glauber model with our relativistic fully microscopic structure model input, we give a full description of the halo nature of $^{31}$Ne that includes a self-consistent use of pairing and continuum contributions that makes predictions consistent with reaction cross section measurements. Our predictions of total reaction and one-neutron removal cross sections of $^{31}$Ne on a Carbon target were significantly enhanced compared with those of neighboring Neon isotopes, agreeing with measurements at 240 MeV/nucleon and consistent with a single neutron halo. Furthermore, our calculations of the inclusive longitudinal momentum distribution of the $^{30}$Ne and valence neutron residues from the $^{31}$Ne breakup reaction indicate a dilute density distribution in coordinate space, another halo signature.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Walter Ikegami Andersson ◽  
Adeel Akram ◽  
Tord Johansson ◽  
Ralf Kliemt ◽  
Michael Papenbrock ◽  
...  

AbstractThe upcoming PANDA experiment at FAIR will be among a new generation of particle physics experiments to employ a novel event filtering system realised purely in software, i.e. a software trigger. To educate its triggering decisions, online reconstruction algorithms need to offer outstanding performance in terms of efficiency and track quality. We present a method to reconstruct longitudinal track parameters in PANDA’s Straw Tube Tracker, which is general enough to be easily added to other track finding algorithms that focus on transversal reconstruction. For the pattern recognition part of this method, three approaches are employed and compared: a combinatorial path finding approach, a Hough transformation, and a recursive annealing fit. In a systematic comparison, the recursive annealing fit was found to outperform the other approaches in every category of quality parameters and reaches a reconstruction efficacy of 95% and higher. Due to its computational simplicity, the recursive annealing fit was also found to have faster execution times compared to the other algorithms.


2021 ◽  
pp. 102-105
Author(s):  
V.V. Ognivenko

The longitudinal momentum diffusion of electrons moving in a spatially periodic magnetic field of an undulator is investigated, taking into account their initial energy spread. Expressions for the coefficient are obtained and the dependences of the diffusion coefficient are determined both on the distance traveled by the electrons in the undulator and on the value of the initial energy spread of the electrons. The possibility of decreasing the wavelength in X-ray free electron lasers is discussed.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Salvatore Calì ◽  
Krzysztof Cichy ◽  
Piotr Korcyl ◽  
Piotr Kotko ◽  
Krzysztof Kutak ◽  
...  

AbstractIn the high energy limit of hadron collisions, the evolution of the gluon density in the longitudinal momentum fraction can be deduced from the Balitsky hierarchy of equations or, equivalently, from the nonlinear Jalilian–Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) equation. The solutions of the latter can be studied numerically by using its reformulation in terms of a Langevin equation. In this paper, we present a comprehensive study of systematic effects associated with the numerical framework, in particular the ones related to the inclusion of the running coupling. We consider three proposed ways in which the running of the coupling constant can be included: “square root” and “noise” prescriptions and the recent proposal by Hatta and Iancu. We implement them both in position and momentum spaces and we investigate and quantify the differences in the resulting evolved gluon distributions. We find that the systematic differences associated with the implementation technicalities can be of a similar magnitude as differences in running coupling prescriptions in some cases, or much smaller in other cases.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Duff Neill ◽  
Felix Ringer ◽  
Nobuo Sato

Abstract The formation and evolution of leading jets can be described by jet functions which satisfy non-linear DGLAP-type evolution equations. Different than for inclusive jets, the leading jet functions constitute normalized probability densities for the leading jet to carry a longitudinal momentum fraction relative to the initial fragmenting parton. We present a parton shower algorithm which allows for the calculation of leading-jet cross sections where logarithms of the jet radius and threshold logarithms are resummed to next-to-leading logarithmic (NLL′) accuracy. By calculating the mean of the leading jet distribution, we are able to quantify the average out-of-jet radiation, the so-called jet energy loss. When an additional reference scale is measured, we are able to determine the energy loss of leading jets at the cross section level which is identical to parton energy loss at leading-logarithmic accuracy. We identify several suitable cross sections for an extraction of the jet energy loss and we present numerical results for leading subjets at the LHC. In addition, we consider hemisphere and event-wide leading jets in electron-positron annihilation similar to measurements performed at LEP. Besides the average energy loss, we also consider its variance and other statistical quantities such as the KL divergence which quantifies the difference between quark and gluon jet energy loss. We expect that our results will be particularly relevant for quantifying the energy loss of quark and gluon jets that propagate through hot or cold nuclear matter.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marco Cè ◽  
Tim Harris ◽  
Harvey B. Meyer ◽  
Arianna Toniato

Abstract We provide an interpretation of the structure functions of a thermal medium such as the quark-gluon plasma in terms of the scattering of an incoming electron on the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the structure functions. Accordingly, these moments are given by the thermal expectation value of twist-two operators, which is computable from first principles in lattice QCD for the first few moments. We also show how lattice QCD calculations can be used to probe how large the photon virtuality needs to be in order for the Bjorken scaling of structure functions to set in. Finally, we provide the parton-model interpretation of the structure functions in the Bjorken limit and test its consistency. As in DIS on the proton, the kinematic variable x is proportional to the longitudinal momentum carried by the partons, however x ranges from zero to infinity. Choosing the parton momentum parametrization to be xT u where u is the fluid four-velocity and T its temperature in the rest frame, the parton distribution function for a plasma of non-interacting quarks is proportional to x log(1 + e−x/2).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Koichi Hattori ◽  
Hidetoshi Taya ◽  
Shinsuke Yoshida

Abstract We study di-lepton production from a single photon in the presence of a strong constant magnetic field. By the use of the Ritus-basis formalism, we analytically evaluate the photon-to-di-lepton conversion vertex with fully taking into account the non-perturbative interactions between the produced fermions and the strong magnetic field. We show that the di-lepton spectrum becomes anisotropic with respect to the magnetic-field direction and depends on the photon polarization as a manifestation of the vacuum dichroism in a strong magnetic field. According to the energy conservation in the presence of the Landau quantization, not only the transverse momentum of the produced fermions but also the longitudinal momentum is discretized, and the di-lepton spectrum exhibits spike structures as functions of the incident photon energy and the magnetic field strength. We also show that the di-lepton production is strictly prohibited for massless fermions in the lowest Landau levels as an analogue of the so-called helicity suppression.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3571 ◽  
Author(s):  
Yuhan Yan ◽  
Dehai Song ◽  
Xianwen Bao ◽  
Yang Ding

The Ou River, a medium-sized river in southeastern China, is selected to study the lateral flow response to rapidly varied river discharge, i.e., peak river discharge (PRD). A three-dimensional model based on the Finite-Volume Community Ocean Model is validated by in situ measurements from 15 June to 16 July 2005. PRD, which considers the extra buoyancy and longitudinal momentum in a short time, rebuilds the stratification and lateral flow. PRD, compared with low-discharge, generally makes stratification stronger and lateral flow weaker. PRD mainly rebuilds lateral flow by changing lateral advection, lateral Coriolis, and lateral-barotropic pressure gradient terms. After PRD, the salinity recovery time is longer than that of the flow because the impact on buoyancy lasts longer than that on longitudinal flow. Longitudinal flow is mostly affected by the momentum transferred during PRD; therefore, the recovery time is close to the flooding duration. However, the lateral flow is affected by the buoyancy, and its recovery time is generally longer than the flooding duration. The lateral flow recovery time depends on transect width, flow velocity and the variation caused by PRD. PRD occurs widely in global small-/medium-sized river estuaries, and the result of this work can be extended to other estuaries.


2020 ◽  
Vol 1643 (1) ◽  
pp. 012185
Author(s):  
Pierre Chatagnon

Abstract Generalized Parton Distributions (GPDs) describe the correlations between the longitudinal momentum and the transverse position of the partons inside the nucleon. They are nowadays the subject of an intense effort of research, in the perspective of understanding nucleon structure. GPDs have been studied mainly using Deeply Virtual Compton Scattering (DVCS, ep → e’p’γ). Here we highlight the measurement of the time-reversal conjugate process of DVCS, Timelike Compton Scattering (TCS) using data taken by CLAS12. The experimental measurement of the TCS angular asymmetry will provide new information on the real part of GPDs. This proceeding assesses the current status of the TCS analysis and presents preliminary results based on CLAS12 data.


Sign in / Sign up

Export Citation Format

Share Document