scholarly journals Proposal for the formation of ultracold deeply bound RbSr dipolar molecules by all-optical methods

2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Adrien Devolder ◽  
Eliane Luc-Koenig ◽  
Osman Atabek ◽  
Michèle Desouter-Lecomte ◽  
Olivier Dulieu
2015 ◽  
Vol 590 ◽  
pp. 284-292 ◽  
Author(s):  
J. Sermeus ◽  
B. Verstraeten ◽  
R. Salenbien ◽  
P. Pobedinskas ◽  
K. Haenen ◽  
...  

2019 ◽  
Author(s):  
Nicolò Accanto ◽  
I-Wen Chen ◽  
Emiliano Ronzitti ◽  
Clément Molinier ◽  
Christophe Tourain ◽  
...  

AbstractIn the past 10 years, the use of light has become irreplaceable for the optogenetic study and control of neurons and neural circuits. Optical techniques are however limited by scattering and can only see through a depth of few hundreds µm in living tissues. GRIN lens based micro-endoscopes represent a powerful solution to reach deeper regions. In this work we demonstrate that cutting edge optical methods for the precise photostimulation of multiple neurons in three dimensions can be performed through a GRIN lens. By spatio-temporally shaping a laser beam in the two-photon regime we project several tens of targets, spatially confined to the size of a single cell, in a volume of 150×150×400 μm3. We then apply such concept to the optogenetic stimulation of multiple neurons simultaneously in vivo in mice. Our work paves the way for an all-optical investigation of neural circuits at previously unattainable depths.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Angelo Forli ◽  
Matteo Pisoni ◽  
Yoav Printz ◽  
Ofer Yizhar ◽  
Tommaso Fellin

All-optical methods for imaging and manipulating brain networks with high spatial resolution are fundamental to study how neuronal ensembles drive behavior. Stimulation of neuronal ensembles using holographic techniques requires high-sensitivity actuators to avoid photodamage and heating. Moreover, two-photon-excitable opsins should be insensitive to light at wavelengths used for imaging. To achieve this goal, we developed a novel soma-targeted variant of the large-conductance blue light-sensitive opsin CoChR (stCoChR). In the mouse cortex in vivo, we combined holographic two-photon stimulation of stCoChR with an amplified laser tuned at the opsin absorption peak and imaging of the red-shifted indicator jRCaMP1a. Compared to previously characterized blue light-sensitive soma-targeted opsins in vivo, stCoChR allowed neuronal stimulation with more than 10-fold lower average power and no spectral crosstalk. The combination of stCoChR, tuned amplified laser stimulation, and red-shifted functional indicators promises to be a powerful tool for large-scale interrogation of neural networks in the intact brain.


2014 ◽  
Vol 7 (11) ◽  
pp. 113004 ◽  
Author(s):  
Kyeong-Dong Lee ◽  
Hyon-Seok Song ◽  
Ji-Wan Kim ◽  
Hyun Seok Ko ◽  
Jeong-Woo Sohn ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tianrui Zhao ◽  
Lei Su ◽  
Wenfeng Xia

Combined ultrasound and photoacoustic imaging has attracted significant interests for intravascular imaging such as atheromatous plaque detection, with ultrasound imaging providing spatial location and morphology and photoacoustic imaging highlighting molecular composition of the plaque. Conventional ultrasound imaging systems utilize piezoelectric ultrasound transducers, which suffer from limited frequency bandwidths and reduced sensitivity with miniature transducer elements. Recent advances on optical methods for both ultrasound generation and detection have shown great promise, as they provide efficient and ultrabroadband ultrasound generation and sensitive and ultrabroadband ultrasound detection. As such, all-optical ultrasound imaging has a great potential to become a next generation ultrasound imaging method. In this paper, we review recent developments on optical ultrasound transmitters, detectors, and all-optical ultrasound imaging systems, with a particular focus on fiber-based probes for intravascular imaging. We further discuss our thoughts on future directions on developing combined all-optical photoacoustic and ultrasound imaging systems for intravascular imaging.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Kais Dridi ◽  
Habib Hamam

We report two new, simple, and cost-effective all-optical methods to generate ultra-wideband (UWB) impulse radio signals. The proposed methods are based on fiber-interferometric structures, where an input pulse is split and propagates along the two interferometer arms. The interference of these pulses at the output of the interferometer leads to UWB pulse generation. A theoretical analysis is provided and some relevant simulation results are presented. Large bandwidths are obtained while satisfying the requirements of the Federal Communication Commission (FCC). With these two techniques, UWB pulses can be readily generated and cost-effectively propagated through optical fibers.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin He ◽  
Meng Pang ◽  
Dung-Han Yeh ◽  
Jiapeng Huang ◽  
Philip. St. J. Russell

AbstractMode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as “photonic molecules”. Conventional mode-locked lasers normally, however, host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or “reactors” in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical methods. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.


Author(s):  
R. Hegerl ◽  
A. Feltynowski ◽  
B. Grill

Till now correlation functions have been used in electron microscopy for two purposes: a) to find the common origin of two micrographs representing the same object, b) to check the optical parameters e. g. the focus. There is a third possibility of application, if all optical parameters are constant during a series of exposures. In this case all differences between the micrographs can only be caused by different noise distributions and by modifications of the object induced by radiation.Because of the electron noise, a discrete bright field image can be considered as a stochastic series Pm,where i denotes the number of the image and m (m = 1,.., M) the image element. Assuming a stable object, the expectation value of Pm would be Ηm for all images. The electron noise can be introduced by addition of stationary, mutual independent random variables nm with zero expectation and the variance. It is possible to treat the modifications of the object as a noise, too.


Sign in / Sign up

Export Citation Format

Share Document