scholarly journals First-principles study of the electrical resistivity in zirconium dichalcogenides with multivalley bands: Mode-resolved analysis of electron-phonon scattering

2021 ◽  
Vol 104 (23) ◽  
Author(s):  
Hitoshi Mori ◽  
Masayuki Ochi ◽  
Kazuhiko Kuroki
2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junsoo Park ◽  
Maxwell Dylla ◽  
Yi Xia ◽  
Max Wood ◽  
G. Jeffrey Snyder ◽  
...  

AbstractBand convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However, this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in the CaMg2Sb2-CaZn2Sb2 Zintl system and full Heusler Sr2SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at a one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Ransell D'Souza ◽  
Jiang Cao ◽  
José D. Querales-Flores ◽  
Stephen Fahy ◽  
Ivana Savić

2020 ◽  
Vol 22 (7) ◽  
pp. 4010-4014
Author(s):  
Xiangtian Bu ◽  
Shudong Wang

Through first-principles simulations combined with the Wannier function interpolation method, the hot carrier scattering rates of D-carbon are studied.


1982 ◽  
Vol 60 (5) ◽  
pp. 693-702 ◽  
Author(s):  
Nathan Wisbr

The temperature-dependent part of the electrical resistivity ρ(T) of a metal consists of the sum of two terms, one term being due to electron–phonon scattering ρcp(T) and the other term being due to electron–electron scattering ρcc(T). One may write[Formula: see text]where θD, is the Debye temperature of the metal and the coefficients C and A give the magnitudes of ρcp(T) and ρcc(T), respectively. For a metal whose electrical resistivity exhibits "simple" behavior, it had been expected that the measured data for ρ(T) would have the following properties. (i) The function f(T/θD) should approach (T/θD) for [Formula: see text]. (ii) The magnitude of the coefficient C should be the same, or nearly so, for all measured samples. (iii) The magnitude of the coefficient A should be the same, or nearly so, for all measured samples.The low-temperature ρexpt(T) data for potassium, which has by now been measured for many samples, exhibit none of these three properties. A discussion will be presented of the reasons for this "non-simple" behavior of ρexpt(T) for potassium.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24515-24520 ◽  
Author(s):  
Xiangtian Bu ◽  
Shudong Wang

Through first-principles calculations combining many-body perturbation theory, we investigate electron–phonon scattering and optical properties including the excitonic effects of T-carbon.


2014 ◽  
Vol 17 (N/A) ◽  
pp. 333-383 ◽  
Author(s):  
Jelena Sjakste ◽  
Iurii Timrov ◽  
Paola Gava ◽  
Natalio Mingo ◽  
Nathalie Vast

Sign in / Sign up

Export Citation Format

Share Document