Magnetic susceptibility of semimagnetic semiconductors: The high-temperature regime and the role of superexchange

1986 ◽  
Vol 33 (5) ◽  
pp. 3407-3418 ◽  
Author(s):  
J. Spal/ek ◽  
A. Lewicki ◽  
Z. Tarnawski ◽  
J. K. Furdyna ◽  
R. R. Galazka ◽  
...  
1988 ◽  
Vol 38 (15) ◽  
pp. 10749-10754 ◽  
Author(s):  
A. Twardowski ◽  
A. Lewicki ◽  
M. Arciszewska ◽  
W. J. M. de Jonge ◽  
H. J. M. Swagten ◽  
...  

2000 ◽  
Vol 14 (14) ◽  
pp. 1441-1449 ◽  
Author(s):  
M. ELIASHVILI ◽  
G. TSITSISHVILI

We consider the parity invariant QED2+1 where the matter is represented as a mixture of fermions with opposite spins. It is argued that the perturbative ground state of the system is unstable with respect to the formation of magnetized ground state. Carrying out the finite temperature analysis we show that the magnetic instability disappears in the high temperature regime.


1997 ◽  
Vol 230-232 ◽  
pp. 490-492 ◽  
Author(s):  
K.A. Kikoin ◽  
M.N. Kiselev ◽  
A.S. Mishchenko

2015 ◽  
Vol 352 ◽  
pp. 178-183 ◽  
Author(s):  
G.L. Pintilei ◽  
V.I. Crismaru ◽  
M. Abrudeanu ◽  
C. Munteanu ◽  
E.R. Baciu ◽  
...  

1970 ◽  
Vol 18 (2) ◽  
pp. 105-110
Author(s):  
A.A. Abdalla ◽  
K. Verkerk

The effects were assessed of CCC and GA on tomatoes grown either under a high temperature regime (35 degrees day and 25 degrees C. night) or at normal temperatures (22 degrees and 18 degrees ). CCC (0.4%) was applied to the soil in the pots either 2 days after transplanting or at the start of flowering; G A was applied by dipping the first truss in GA (50 p.p.m.). CCC greatly retarded the growth rate of the stems of the plants under both temperature regimes; this effect persisted for about 17 and 24 days under the high and normal temperature regimes, respectively. With plants grown at high temperatures CCC applied at the start of flowering greatly reduced flower shedding and slightly increased the fruit set and fruit development of hand-pollinated flowers. With plants grown at normal temperatures, however, the effects of CCC were slight. CCC-treated plants were sturdy with dark-green leaves which remained green longer, especially under the high temperature regime. More N accumulated in the tissues of plants grown at high temperatures than at normal temperatures, and the N content of the latter plants was considerably increased by CCC treatment. The root development of the CCC-treated plants was much more extensive than that of the untreated plants. The numbers of seeds in the hand-pollinated fruit were not affected by CCC, but at high temperatures there were considerably less seeds than at low temperatures. GA enhanced fruit set of the high-temperature plants, but the fruits were small and seedless. GA also accelerated fruit ripening by 2 and 3 weeks in the plants grown at high and normal temperatures, respectively.-Agric. Univ., Wageningen. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Author(s):  
Sean P. Cooper ◽  
Eric L. Petersen

Abstract Lubricant ignition is a highly undesirable event in any mechanical system, and surprisingly minimal work has been conducted to investigate the auto-ignition properties of gas turbine lubricants. To this end, using a recently established spray injection scheme in a shock tube, two gas turbine lubricants (Mobil DTE 732 and Lubricant A from Cooper et al. 2020) were subjected to high-temperature, post-reflected-shock conditions, and OH* chemiluminescence was monitored at the sidewall location of the shock tube to measure ignition delay time (τign). A combination of an extended shock-tube driver and driver-gas tailoring were utilized to observe ignition between 1183 K and 1385 K at near-atmospheric pressures. A clear, two-stage-ignition process was observed for all tests with Mobil DTE 732, and both first and second stage τign are compared. Second stage ignition was found to be more indicative of lubricant ignition and was used to compare τign values with lubricant A. Both lubricants exhibit three ignition regimes: a high-temperature, Arrhenius-like regime (> 1275 K); an intermediate, negative-temperature-coefficient-like regime (1230–1275 K); and a low-temperature ignition regime (< 1230 K). Similar τign behavior in the high-temperature regime was seen for both lubricants, and a regression analysis using τign data from both lubricants in this region produced the Arrhenius expression τign(μs) = 4.4 × 10−14exp(96.7(kcal/mol)/RT). While lubricant A was found to be less reactive in the intermediate-temperature regime, Mobil DTE 732 was less reactive in the low-temperature regime. As the low-temperature regime is more relevant to gas turbine conditions, Mobil DTE 732 is considered more desirable for system implementation. Chemical kinetic modeling was also performed using n-hexadecane models (a lubricant surrogate suggested in the literature). The current models are unable to reproduce the three regimes observed and predict activation energies much lower than those observed in the high-temperature regime, suggesting n-hexadecane is a poor surrogate for lubricant ignition. Additionally, experiments were conducted with Jet-A for temperatures between 1145 and 1419 K around 1 atm. Good agreement is seen with both literature data and model predictions, anchoring the experiment with previously established τign measurement methods and calculations. A linear regression analysis of the Jet-A data produced the Arrhenius expression: τign(μs) = 6.39 × 10−5exp(41.4(kcal/mol)/RT).


1996 ◽  
Vol 322 ◽  
pp. 275-296 ◽  
Author(s):  
H. G. Im ◽  
B. T. Helenbrook ◽  
S. R. Lee ◽  
C. K. Law

Asymptotic analysis of ignition within the supersonic hydrogen/air mixing layer is performed using reduced mechanisms. Two distinct reduced mechanisms for the high-temperature and the low-temperature regimes are used depending on the characteristic temperature of the reaction zone relative to the crossover temperature at which the reaction rates of the H + 02 branching and termination steps are equal. Each regime further requires two distinct analyses for the hot-stream and the viscous-heating cases, depending on the relative dominance of external and internal ignition energy sources. These four cases are analysed separately, and it is shown that the present analysis successfully describes the ignition process by exhibiting turning point or thermal runaway behaviour in the low-temperature regime, and radical branching followed by thermal runaway in the high-temperature regime. Results for the predicted ignition distances are then mapped out over the entire range of the parameters, showing consistent behaviour with the previous one-step model analysis. Furthermore, it is demonstrated that ignition in the low-temperature regime is controlled by a larger activation energy process, so that the ignition distance is more sensitive to its characteristic temperature than that in the high-temperature regime. The ignition distance is also found to vary non-monotonically with the system pressure in the manner of the well-known hydrogen/oxygen explosion limits, thereby further substantiating the importance of chemical chain mechanisms in this class of chemically reacting boundary layer flows.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
K. R. Knox ◽  
E. S. Bozin ◽  
C. D. Malliakas ◽  
M. G. Kanatzidis ◽  
S. J. L. Billinge

Sign in / Sign up

Export Citation Format

Share Document