scholarly journals MAGNETIC INSTABILITY IN A PARITY INVARIANT TWO-DIMENSIONAL FERMION SYSTEM

2000 ◽  
Vol 14 (14) ◽  
pp. 1441-1449 ◽  
Author(s):  
M. ELIASHVILI ◽  
G. TSITSISHVILI

We consider the parity invariant QED2+1 where the matter is represented as a mixture of fermions with opposite spins. It is argued that the perturbative ground state of the system is unstable with respect to the formation of magnetized ground state. Carrying out the finite temperature analysis we show that the magnetic instability disappears in the high temperature regime.

2011 ◽  
Vol 110-116 ◽  
pp. 465-471
Author(s):  
Lee Peng Teo

We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.


2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Diana Conache ◽  
Markus Heydenreich ◽  
Franz Merkl ◽  
Silke W. W. Rolles

AbstractWe study the behavior of the variance of the difference of energies for putting an additional electric unit charge at two different locations in the two-dimensional lattice Coulomb gas in the high-temperature regime. For this, we exploit the duality between this model and a discrete Gaussian model. Our estimates follow from a spontaneous symmetry breaking in the latter model.


2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040046
Author(s):  
T. Yanagisawa ◽  
M. Miyazaki ◽  
K. Yamaji

It is important to understand the phase diagram of electronic states in the CuO2 plane to clarify the mechanism of high-temperature superconductivity. We investigate the ground state of electronic models with strong correlation by employing the optimization variational Monte Carlo method. We consider the two-dimensional Hubbard model as well as the three-band [Formula: see text]–[Formula: see text] model. We use the improved wave function that takes account of inter-site electron correlation to go beyond the Gutzwiller wave function. The ground state energy is lowered considerably, which now gives the best estimate of the ground state energy for the two-dimensional Hubbard model. The many-body effect plays an important role as an origin of spin correlation and superconductivity in correlated electron systems. We investigate the competition between the antiferromagnetic state and superconducting state by varying the Coulomb repulsion [Formula: see text], the band parameter [Formula: see text] and the electron density [Formula: see text] for the Hubbard model. We show phase diagrams that include superconducting and antiferromagnetic phases. We expect that high-temperature superconductivity occurs near the boundary between antiferromagnetic phase and superconducting one. Since the three-band [Formula: see text]–[Formula: see text] model contains many-band parameters, high-temperature superconductivity may be more likely to occur in the [Formula: see text]–[Formula: see text] model than in single-band models.


1997 ◽  
Vol 230-232 ◽  
pp. 490-492 ◽  
Author(s):  
K.A. Kikoin ◽  
M.N. Kiselev ◽  
A.S. Mishchenko

2015 ◽  
Vol 352 ◽  
pp. 178-183 ◽  
Author(s):  
G.L. Pintilei ◽  
V.I. Crismaru ◽  
M. Abrudeanu ◽  
C. Munteanu ◽  
E.R. Baciu ◽  
...  

1970 ◽  
Vol 18 (2) ◽  
pp. 105-110
Author(s):  
A.A. Abdalla ◽  
K. Verkerk

The effects were assessed of CCC and GA on tomatoes grown either under a high temperature regime (35 degrees day and 25 degrees C. night) or at normal temperatures (22 degrees and 18 degrees ). CCC (0.4%) was applied to the soil in the pots either 2 days after transplanting or at the start of flowering; G A was applied by dipping the first truss in GA (50 p.p.m.). CCC greatly retarded the growth rate of the stems of the plants under both temperature regimes; this effect persisted for about 17 and 24 days under the high and normal temperature regimes, respectively. With plants grown at high temperatures CCC applied at the start of flowering greatly reduced flower shedding and slightly increased the fruit set and fruit development of hand-pollinated flowers. With plants grown at normal temperatures, however, the effects of CCC were slight. CCC-treated plants were sturdy with dark-green leaves which remained green longer, especially under the high temperature regime. More N accumulated in the tissues of plants grown at high temperatures than at normal temperatures, and the N content of the latter plants was considerably increased by CCC treatment. The root development of the CCC-treated plants was much more extensive than that of the untreated plants. The numbers of seeds in the hand-pollinated fruit were not affected by CCC, but at high temperatures there were considerably less seeds than at low temperatures. GA enhanced fruit set of the high-temperature plants, but the fruits were small and seedless. GA also accelerated fruit ripening by 2 and 3 weeks in the plants grown at high and normal temperatures, respectively.-Agric. Univ., Wageningen. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1986 ◽  
Vol 33 (5) ◽  
pp. 3407-3418 ◽  
Author(s):  
J. Spal/ek ◽  
A. Lewicki ◽  
Z. Tarnawski ◽  
J. K. Furdyna ◽  
R. R. Galazka ◽  
...  

2021 ◽  
Author(s):  
Sean P. Cooper ◽  
Eric L. Petersen

Abstract Lubricant ignition is a highly undesirable event in any mechanical system, and surprisingly minimal work has been conducted to investigate the auto-ignition properties of gas turbine lubricants. To this end, using a recently established spray injection scheme in a shock tube, two gas turbine lubricants (Mobil DTE 732 and Lubricant A from Cooper et al. 2020) were subjected to high-temperature, post-reflected-shock conditions, and OH* chemiluminescence was monitored at the sidewall location of the shock tube to measure ignition delay time (τign). A combination of an extended shock-tube driver and driver-gas tailoring were utilized to observe ignition between 1183 K and 1385 K at near-atmospheric pressures. A clear, two-stage-ignition process was observed for all tests with Mobil DTE 732, and both first and second stage τign are compared. Second stage ignition was found to be more indicative of lubricant ignition and was used to compare τign values with lubricant A. Both lubricants exhibit three ignition regimes: a high-temperature, Arrhenius-like regime (> 1275 K); an intermediate, negative-temperature-coefficient-like regime (1230–1275 K); and a low-temperature ignition regime (< 1230 K). Similar τign behavior in the high-temperature regime was seen for both lubricants, and a regression analysis using τign data from both lubricants in this region produced the Arrhenius expression τign(μs) = 4.4 × 10−14exp(96.7(kcal/mol)/RT). While lubricant A was found to be less reactive in the intermediate-temperature regime, Mobil DTE 732 was less reactive in the low-temperature regime. As the low-temperature regime is more relevant to gas turbine conditions, Mobil DTE 732 is considered more desirable for system implementation. Chemical kinetic modeling was also performed using n-hexadecane models (a lubricant surrogate suggested in the literature). The current models are unable to reproduce the three regimes observed and predict activation energies much lower than those observed in the high-temperature regime, suggesting n-hexadecane is a poor surrogate for lubricant ignition. Additionally, experiments were conducted with Jet-A for temperatures between 1145 and 1419 K around 1 atm. Good agreement is seen with both literature data and model predictions, anchoring the experiment with previously established τign measurement methods and calculations. A linear regression analysis of the Jet-A data produced the Arrhenius expression: τign(μs) = 6.39 × 10−5exp(41.4(kcal/mol)/RT).


Sign in / Sign up

Export Citation Format

Share Document