Crystal structure and microstructure ofNd1.8Sr0.2NiO3.72: AK2NiF4-type nickelate with monoclinic symmetry and ordered oxygen vacancies

1994 ◽  
Vol 49 (13) ◽  
pp. 8591-8599 ◽  
Author(s):  
M. Medarde ◽  
J. Rodríguez-Carvajal ◽  
M. Vallet-Regí ◽  
J. M. González-Calbet ◽  
J. Alonso
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3945 ◽  
Author(s):  
Qiang Ma ◽  
Lulu Chen ◽  
Heng Qi ◽  
Qi Xu ◽  
Baohe Yuan ◽  
...  

In this investigation, ZrxY2−xVxMo3−xO12 (0 ≤ x ≤ 1.4) is developed and the effects of the substitutions of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12 on the hygroscopicity and thermal expansion property are investigated. For the smaller substitution content (x ≤ 0.5), their crystal structures remain orthorhombic, while there is crystal water still in the lattice. The linear coefficients of thermal expansions (CTEs), for x = 0.1, 0.3, 0.5, and 0.7, are about −4.30 × 10−6, −0.97 × 10−6, 0.85 × 10−6, and 0.77 × 10−6 K−1, respectively, from 476 to 773 K, which means that the linear CTE could be changed linearly with the substitution content of Zr4+/V5+ for Y3+/Mo6+ in Y2Mo3O12. As long as the substitution content reaches x = 1.3/1.4, almost no hygroscopicity and low thermal expansion from room temperature are obtained and are discussed in relation to the crystal structure and microstructure.


2008 ◽  
Vol 64 (a1) ◽  
pp. C600-C600
Author(s):  
E.N. Domoroshchina ◽  
G.M. Kuz'micheva ◽  
E.A. Tuynina ◽  
A.B. Dubovsky

2018 ◽  
Vol 33 (3) ◽  
pp. 216-224 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
A. Y. Chufarov ◽  
N. I. Lobachevskaya ◽  
A. A. Velikodnyi

Polycrystalline samples of Ca2Zn2(V4O14) (I) and Pb2Cd2(V3O10)(VO4) (II) were synthesized using the nitrate–citrate method (I) and conventional solid state reaction (II). The structural refinement based on X-ray powder diffraction data showed that the crystal structure of (I) is characterized by monoclinic symmetry with unit-cell parameters a = 6.8044(1) Å, b = 14.4876(3) Å, c = 11.2367(2) Å, β = 99.647(1)° [space group P21/c (No. 14), Z = 4], and the crystal structure of (II) is triclinic with unit-cell parameters a = 7.03813(6) Å, b = 12.9085(1) Å, c = 6.99961(5) Å, α = 90.7265(5)°, β = 96.3789(5)°, γ = 94.9530(6)°, V = 629.470(8) Å3 [space group P$\bar 1$ (No. 2), Z = 2].


Inorganics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
Leonid Vasylechko ◽  
Andrii Tupys ◽  
Vasyl Hreb ◽  
Volodymyr Tsiumra ◽  
Iryna Lutsiuk ◽  
...  

The results are reported on a precise crystal structure and microstructure determination of new mixed YVO4-based orthovanadates of Y0.5R0.5VO4 (R = Sm, Tb, Dy, Ho, Tm, Yb, Lu) as well as some Bi3+-doped RVO4 (R = La, Gd, Y, Lu) nano- (submicro-) materials. The formation of continuous solid solutions in the YVO4–RVO4 pseudo-binary systems (R = Sm, Tb, Dy, Ho, Tm, Yb, Lu) has been proved. The lattice constants and unit cell volumes of the new mixed orthovanadates were analyzed as a function of R3+ cation radius. The impact of crystal structure parameters on the energy band gap of the materials was studied by means of photoluminescence studies of the Bi3+-doped compounds.


Sign in / Sign up

Export Citation Format

Share Document