tini alloy
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 62)

H-INDEX

29
(FIVE YEARS 1)

2022 ◽  
Author(s):  
A. Churakova

Abstract. In this work was investigate the corrosion behavior of the TiNi alloy in a coarse-grained state in inorganic field with different concentration and holding time. An increase in the concentration of the solution leads to a significant acceleration of corrosion processes in the Ti49.1Ni50.9 alloy with a high Ni content, including until the samples are completely dissolved. It was revealed that solutions of 1 M sulfuric and hydrochloric acids after a month's exposure did not change in color and no precipitations were found, while solutions of 5 M hydrochloric and sulfuric acids acquired a violet and then green color, which is due to the predominant release of titanium ions (+4) and nickel (+2).


2022 ◽  
Vol 92 (1) ◽  
pp. 174
Author(s):  
Е.С. Остропико ◽  
С.Г. Магазинов ◽  
С.И. Кривошеев

Magnetic-pulse loading methods have been known since the 80s of the XX century and, as a rule, are used to determine the laws of destruction of materials under the action of pressure pulses with a duration of several microseconds. A modified scheme of a magnetic-pulse setup for high strain rate uniaxial tension is used in this work. The application of the scheme with the possibility of experimental measurement of the strain accumulation time and strain rate is shown on samples of TiNi alloy. The paper presents the results of finite element modeling and analytical description. Both approaches have demonstrated good agreement between the calculated residual strain and experimental results, even on samples of TiNi alloy with a specific stress-strain diagram. The analytical solution showed good qualitative agreement in assessing the strain accumulation time. On the basis of the analytical solution, an assessment of the capabilities of the magnetic-pulse loading method for uniaxial high strain rate tension is presented.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012026
Author(s):  
E M Kayumova ◽  
A A Churakova ◽  
O R Latypov

Abstract This article studies the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained states. The study of the influence of the initial microstructure on the corrosion behavior of the TiNi alloy was carried out by the gravimetric method in the NaCl and H2SO4 solution for a month. Studies was shown that as a result of the action of a corrosive medium from a sample in a coarse-grained state, it undergoes greater destruction, pitting corrosion was observed, at the same time, in an ultrafine-grained sample only traces of corrosion products are observed on the surface of the samples. Investigations with an inverted light microscope in a dark field made it possible to observe corrosion products and determine their volume fraction. Evaluation of the corrosion rate showed that in the coarse-grained state it is 126 times higher than the corrosion rate in the ultrafine-grained state. Analysis of X-ray phase analysis showed that in the coarse-grained state after corrosion tests, a significant proportion of the TiNiH1.4 phase is observed, while in the ultrafine-grained state all phases correspond only to the TiNi phases. The TiNi alloy contains an Ti2Ni phase enriched Ti both in the coarse-grained state and in the ultrafine-grained state. Moreover, in a coarse-grained state, its share is 2 times higher.


2021 ◽  
Vol 2052 (1) ◽  
pp. 012005
Author(s):  
V V Burkhovetskiy ◽  
A O Kamaev ◽  
A Yu Kiselev ◽  
D V Kurushkin ◽  
V M Khanaev ◽  
...  

Abstract The paper analyzes the behavior of the deformation characteristics of welded joints made of TiNi alloy with a shape memory effect. Comparison of the level of tensile strength of welded samples made by the TIG method in an Ar and He atmosphere was carried out using a Instron 5985 universal machine. The study of the material structure in the weld zone and the heat-affected zone was carried out on longitudinal sections using a JSM-6490LV electron microscope. To estimate the mechanical parameters PMT-3 microhardness tester was used. The calorimetric parameters of the welded samples were obtained using a differential scanning calorimeters METTLER TOLEDO 822e and TA Instruments Q20. To analyze the gradient properties at the weld zone and the heat-affected zone, the temperature fields were calculated using the thermal conductivity equation included in the model of the residual stress mechanism.


Author(s):  
Syed Abbas Raza ◽  
Muhammad Imran Khan ◽  
Muhammad Ramzan Abdul karim ◽  
Rashid Ali ◽  
Muhammad Umair Naseer ◽  
...  

Abstract Equiatomic TiNi alloy composites, reinforced with 0, 5, 10 and 15 vol. % ZrO2, were synthesized using conventional sintering approach. Equiatomic TiNi pre-alloyed powder and ZrO2 powder were mixed in planetary ball mill for 6 hours followed by cold compaction and pressure-less sintering, respectively. The sintered density was found to vary inversely with the addition of ZrO2 content. The X-Ray diffraction spectra have shown the formation of multiple-phases which were resulted from the decomposition of the B19'and B2 phases of the equiatomic TiNi alloy due to the addition of ZrO2 and higher diffusion rate of Ni than that of Ti in the alloy composite. An increase in hardness was noted due to the addition of ZrO2, measured by micro and nanoindentation techniques. Potentiodynamic polarization scan revealed a 10% decrease in the corrosion rate of the composite containing 10 vol. % ZrO2. Electrochemical impedance spectroscopy results indicated an increase in passive layer resistance (Rcoat) due to the increase in charge transfer resistance (Rct) caused by the reduced leaching of ions from the surface.


Author(s):  
V. V. Rubanik ◽  
D. A. Bahrets ◽  
V. V. Rubanik jr. ◽  
V. I. Urban ◽  
A. N. Uzhekina ◽  
...  

The aim of the present work is to study the influence of the technological parameters of the ion-plasma treatment (IPT) on the functional properties of a TiNi shape memory alloy and its biocompatibility. The object of the study was the Ti–50.8 at. % Ni alloy, widely applied in medical devices. IPT was carried out by vacuum-arc evaporation of a titanium cathode at different values of the bias potential (0, –100, and –500 V), followed by TiN deposition. The functional properties of the TiNi alloy after IPT were investigated using differential scanning calorimetry. The biocompatible properties were evaluated using atomic emission spectrometry to measure a nickel concentration after one year holding TiN-coated TiNi samples in the 0.9 % NaCl solution. It has been determined that by setting the temperature regime of heating of Ti–50.8 at. % Ni alloy samples due to the technological parameters of the IPT process, it is possible to change the interval of realization of thermoelastic martensitic transformations, and, consequently, the temperature response of devices made of this alloy, i. e. to set the necessary functional properties. The comparative analysis of the characteristic temperatures after heat and ion-plasma treatments allow us to conclude that the proposed method for calculation of the TiNi substrate temperature is correct at IPT. The calculated temperature of the TiNi samples was ~275 °C at the zero potential, which is sufficient to shift the characteristic temperatures of the alloy. The substrate temperature during deposition was ~400 °C at a – 100 V bias and above 600 °C at a – 500 V bias, respectively. The Ni concentration in the model solution did not exceed 0.14 mg/l after one year holding, which indicates the high biocompatibility of the TiN-coated TiNi samples.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ekaterina Marchenko ◽  
Yuriy Yasenchuk ◽  
Diana Avdeeva ◽  
Gulsharat Baigonakova ◽  
Sergey Gunther ◽  
...  

Background: The porous SHS–TiNi alloy is a widely used material for repairing defects in bone tissues. Objective: The objective of the study is to comprehensively investigate porous SHS–TiNi alloy samples for fatigue strength under cyclic bending, to study deformation characteristics under quasistatic tension and bending, and to carry out the fractographic analysis of fracture features. Method: The study employed the electrospark method for cutting plates from a porous isotropic SHS–TiNi rod 30 mm in diameter and 300 mm in length. Results: Deformation behaviour under tension and three-point bending of porous plates showed that porous samples undergo viscoelastic deformation due to the austenite–martensite (A→M) phase transformation. The fracture surfaces of elastic porous samples were studied by SEM. Microscopic studies of fracture surfaces revealed zones of quasi-brittle fracture of martensite and viscous fracture of austenite. The porous framework of intermetallic alloy exhibits a continuous brittle layer and numerous brittle non-metallic inclusions. However, successful fatigue tests showed that brittle phases and inclusions do not significantly affect deformation and fatigue characteristics of porous titanium nickelide. It was found that 70% of porous samples sustain 106 cycles of deformation without fracture due to reversible A→M→A phase transformations in the TiNi phase, which is one of the components of multiphase porous alloy. Conclusion: Viscoelastic behavior of the porous sample and its high fatigue strength under cyclic loading is due to reversible deformation of the TiNi phase. The corrosion-resistant layer of the porous framework allows an effective use of SHS–TiNi.


Sign in / Sign up

Export Citation Format

Share Document