scholarly journals Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

1995 ◽  
Vol 52 (22) ◽  
pp. 16255-16263 ◽  
Author(s):  
Alain F. Veilleux ◽  
Anne-Marie Daré ◽  
Liang Chen ◽  
Y. M. Vilk ◽  
A.-M. S. Tremblay
1999 ◽  
Vol 259-261 ◽  
pp. 775-776 ◽  
Author(s):  
R Kirchhofer ◽  
R Frésard ◽  
H Beck ◽  
J.J Rodrı́guez-Núñez

1996 ◽  
Vol 10 (12) ◽  
pp. 1397-1423 ◽  
Author(s):  
MASA-AKI OZAKI ◽  
EIJI MIYAI ◽  
TOMOAKI KONISHI ◽  
KAORU HANAFUSA

This paper describes group theoretical classification of superconducting states (SC) in the extended Hubbard model with on-site repulsion (U), nearest neighbor attraction (V) and nearest neighbour exchange interaction (J) on the two-dimensional square lattice using the mean field approach. By decomposing the pairing interaction into irreducible parts; A1g, B1g and Eu of D4h point symmetry, we have derived two singlet SCs (s-wave and d-wave) from A1g and B1g, eight triplet SCs from Eu. The first three types of triplet SC have pairing by electrons with antiparallel spin, the second two types have pairing by electrons with equal spin and the last three types are non-unitary and have pairing by only up-spin electrons. We showed that three non-unitary states have to be accompanied with a ferromagnetic order from the structure of the maximal little groups. We performed numerical studies for these SCs. For parameters and electron density favorable for the ferromagnetic order, a non-unitary SC coexistent with ferromagnetism is most stable.


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Lijuan Guo ◽  
Sebastian Greschner ◽  
Siyu Zhu ◽  
Wanzhou Zhang

Science ◽  
2019 ◽  
Vol 365 (6460) ◽  
pp. 1424-1428 ◽  
Author(s):  
Hong-Chen Jiang ◽  
Thomas P. Devereaux

The Hubbard model is widely believed to contain the essential ingredients of high-temperature superconductivity. However, proving definitively that the model supports superconductivity is challenging. Here, we report a large-scale density matrix renormalization group study of the lightly doped Hubbard model on four-leg cylinders at hole doping concentration δ = 12.5%. We reveal a delicate interplay between superconductivity and charge density wave and spin density wave orders tunable via next-nearest neighbor hopping t′. For finite t′, the ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge density wave correlations associated with half-filled charge stripes. In contrast, for t′ = 0, superconducting correlations fall off exponentially, whereas charge density and spin density modulations are dominant. Our results indicate that a route to robust long-range superconductivity involves destabilizing insulating charge stripes in the doped Hubbard model.


2012 ◽  
Vol 26 (29) ◽  
pp. 1250156 ◽  
Author(s):  
S. HARIR ◽  
M. BENNAI ◽  
Y. BOUGHALEB

We investigate the ground state phase diagram of the two dimensional Extended Hubbard Model (EHM) with more than Nearest-Neighbor (NN) interactions for finite size system at low concentration. This EHM is solved analytically for finite square lattice at one-eighth filling. All eigenvalues and eigenvectors are given as a function of the on-site repulsion energy U and the off-site interaction energy Vij. The behavior of the ground state energy exhibits the emergence of phase diagram. The obtained results clearly underline that interactions exceeding NN distances in range can significantly influence the emergence of the ground state conductor–insulator transition.


2011 ◽  
Vol 25 (01) ◽  
pp. 159-169 ◽  
Author(s):  
MANORANJAN KUMAR ◽  
SUJIT SARKAR ◽  
S. RAMASESHA

We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose–Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.


Sign in / Sign up

Export Citation Format

Share Document