scholarly journals Quantum nucleation in a ferromagnetic film placed in a magnetic field at an arbitrary angle

1997 ◽  
Vol 55 (22) ◽  
pp. 15053-15059 ◽  
Author(s):  
Gwang-Hee Kim
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuejie Xie ◽  
Xiaonan Zhao ◽  
Yanan Dong ◽  
Xianlin Qu ◽  
Kun Zheng ◽  
...  

AbstractProgrammable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current in itself. Here, we demonstrate a repeatable bulk spin-orbit torque (SOT) switching of the perpendicularly magnetized CoPt alloy single-layer films by introducing a composition gradient in the thickness direction to break the inversion symmetry. Experimental results reveal that the bulk SOT-induced effective field on the domain walls leads to the domain walls motion and magnetization switching. Moreover, magnetic field-free perpendicular magnetization switching caused by SOT and its switching polarity (clockwise or counterclockwise) can be reversibly controlled in the IrMn/Co/Ru/CoPt heterojunctions based on the exchange bias and interlayer exchange coupling. This unique composition gradient approach accompanied with electrically controllable SOT magnetization switching provides a promising strategy to access energy-efficient control of memory and logic devices.


2019 ◽  
Vol 945 ◽  
pp. 771-775 ◽  
Author(s):  
V.P. Panaetov ◽  
Denis B. Solovev

Ferromagnetic film can be a matrix for recording information with the help of magnetic moments of electrons. The study of the processes of changing the magnetic structure in an electron-transmission microscope makes it possible to investigate micro magnetic phenomena. In this paper, we investigate the interaction between the vertices of neighboring regions. It is shown how the magnetic structure of the vertices of the domains changes as they approach each other with the help of an increasing constant magnetic field applied along the axis of easy magnetization. The distance was measured between the vertices of the domains. The schemes of distribution of the magnetization vectors between interacting vertices are shown. These schemes are made from experimental images of the magnetic structure. The distances between domain vertices and domain walls were compared on the basis of experimental data. The film thickness is 50 nm; the structure is Ni0.83-Fe0.17. The films were obtained by the method proposed by us. From the experimental results it follows that the interaction of the domain walls is observed at a distance of 20 microns and the interaction of the domain vertices is manifested at a distance of 100 μm.


2005 ◽  
Vol 12 (2) ◽  
pp. 022102 ◽  
Author(s):  
Carlo Cereceda ◽  
Michel de Peretti ◽  
Claude Deutsch

1978 ◽  
Vol 19 (3) ◽  
pp. 405-410 ◽  
Author(s):  
A. A. Selim

Quantum field theory is used to investigate the resonant nonlinear interaction between three longitudinal waves propagating at any arbitrary angle to a uniform magnetic field in a plasma. The coupled mode equations, coupling coefficient and a formula for the growth rates are derived.


2013 ◽  
Author(s):  
Truong Giang Nguyen ◽  
Xinbing Jiao ◽  
Wenfeng Lei ◽  
Yue Ma ◽  
Lixin Ma ◽  
...  

2007 ◽  
Vol 998 ◽  
Author(s):  
Alexander Khitun ◽  
Mingqiang Bao ◽  
Joo-Young Lee ◽  
Kang Wang ◽  
Dok Won Lee ◽  
...  

ABSTRACTWe investigate spin wave propagation and interference in conducting ferromagnetic nanostructures for potential application in spin wave based logic circuits. The novelty of this approach is that information transmission is accomplished without charge transfer. A bit of information is encoded into the phase of spin wave propagating in a nanometer thick ferromagnetic film. A set of “AND”, “NOR”, and “NOT” logic gates can be realized in one device structure by utilizing the effect of spin wave superposition. We present experimental data on spin wave transport in 100nm CoFe films at room temperature obtained by the propagation spin wave spectroscopy technique. Spin wave transport has been studied in the frequency range from 0.5 GHz to 6.0 GHz under different configurations of the external magnetic field. Both phase and amplitude of the spin wave signal are sensitive to the external magnetic field showing 60Deg/10G and 4dB/20G modulation rates, respectively. Potentially, spin wave based logic circuits may compete with traditional electron-based ones in terms of logic functionality and power consumption. The shortcomings of the spin wave based circuits are discussed.


Sign in / Sign up

Export Citation Format

Share Document