scholarly journals Influence of magnetic-field-induced spin-density-wave motion and finite temperature on the quantum Hall effect in quasi-one-dimensional conductors: A quantum field theory

1998 ◽  
Vol 58 (16) ◽  
pp. 10648-10664 ◽  
Author(s):  
Victor M. Yakovenko ◽  
Hsi-Sheng Goan
2012 ◽  
Vol 27 (15) ◽  
pp. 1260007 ◽  
Author(s):  
I. V. FIALKOVSKY ◽  
D. V. VASSILEVICH

This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.


Author(s):  
I. V. FIALKOVSKY ◽  
D. V. VASSILEVICH

This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 844
Author(s):  
Ben Maybee ◽  
Daniel Hodgson ◽  
Almut Beige ◽  
Robert Purdy

Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes. Working within the standard assumptions of quantum field theory and only postulating the physicality of the photon, we derive the Hamiltonian, H ^ , and the electric and magnetic field observables, E ^ and B ^ , respectively, without having to invoke a specific gauge. As an example, we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler space, and demonstrate consistency with other field quantisation schemes by reproducing the Unruh effect.


1989 ◽  
Vol 173 ◽  
Author(s):  
S. T. Hannahs ◽  
J. S. Brooks ◽  
W. Kang ◽  
P. M. Chaikin ◽  
L. Y. Chiang ◽  
...  

ABSTRACTWe present magnetotransport data and the phase diagram derived from them for (TMTSF)2PF6 under sufficient pressure that the zero field Spin Density Wave (SDW) is suppressed and the material is superconducting. Application of a large magnetic field perpendicular to the conducting plane then leads to the cascade of Field Induced Spin Density Wave (FISDW) transitions. The transitions are in good agreement with the Standard model for these transitions and in contrast to the more complicated behavior seen in the ClO4 salt. In addition Hall and longitudinal resistivity indicates a behavior much closer to that observed in conventional Quantum Hall devices than in the ClO4 salt or previous studies of PF6. We do observe the “rapid” Schubnikov de Haas like oscillations in magnetoresistance at high field similar to those seen in ClO4, even though in the present case there is no evidence for anion ordering as some theories would require.


Sign in / Sign up

Export Citation Format

Share Document