In-plane versus out-of-plane dielectric response in the thin-film relaxorPb(Sc1∕2Ta1∕2)O3

2006 ◽  
Vol 73 (21) ◽  
Author(s):  
K. Brinkman ◽  
A. Tagantsev ◽  
V. Sherman ◽  
D. Su ◽  
N. Setter
2016 ◽  
Vol 06 (02) ◽  
pp. 1650015 ◽  
Author(s):  
D. Wang ◽  
Z. Jiang

We use the first-principles-based molecular dynamic approach to simulate dipolar dynamics of BaZrO3/BaTiO3 superlattice, and obtain its dielectric response. The dielectric response is decomposed into its compositional, as well as the in-plane and out-of-plane parts, which are then discussed in the context of chemical ordering of Zr/Ti ions. We reveal that, while the in-plane dielectric response of BaZrO3/BaTiO3 superlattice also shows dispersion over probing frequency, it shall not be categorized as relaxor.


MRS Advances ◽  
2016 ◽  
Vol 1 (37) ◽  
pp. 2635-2640 ◽  
Author(s):  
Adele Moatti ◽  
Reza Bayati ◽  
Srinivasa Rao Singamaneni ◽  
Jagdish Narayan

ABSTRACTBi-epitaxial VO2 thin films with [011] out-of-plane orientation were integrated with Si(100) substrates through TiO2/TiN buffer layers. At the first step, TiN is grown epitaxially on Si(100), where a cube-on-cube epitaxy is achieved. Then, TiN was oxidized in-situ ending up having epitaxial r-TiO2. Finally, VO2 was deposited on top of TiO2. The alignment across the interfaces was stablished as VO2(011)║TiO2(110)║TiN(100)║Si(100) and VO2(110) /VO2(010)║TiO2(011)║TiN(112)║Si(112). The inter-planar spacing of VO2(010) and TiO2(011) equal to 2.26 and 2.50 Å, respectively. This results in a 9.78% tensile misfit strain in VO2(010) lattice which relaxes through 9/10 alteration domains with a frequency factor of 0.5, according to the domain matching epitaxy paradigm. Also, the inter-planar spacing of VO2(011) and TiO2(011) equals to 3.19 and 2.50 Å, respectively. This results in a 27.6% compressive misfit strain in VO2(011) lattice which relaxes through 3/4 alteration domains with a frequency factor of 0.57. We studied semiconductor to metal transition characteristics of VO2/TiO2/TiN/Si heterostructures and established a correlation between intrinsic defects and magnetic properties.


2000 ◽  
Vol 18 (5) ◽  
pp. 2437 ◽  
Author(s):  
J.-H. Song ◽  
K. K. Kim ◽  
Y. J. Oh ◽  
H.-J. Jung ◽  
W. K. Choi ◽  
...  

2008 ◽  
Vol 18 (12) ◽  
pp. 1279-1280 ◽  
Author(s):  
Ki Jinn Chin ◽  
Vincent WS Chan ◽  
Geert Jan Van Geffen

Nano Letters ◽  
2019 ◽  
Vol 20 (2) ◽  
pp. 1047-1053
Author(s):  
Tingting Yao ◽  
Yixiao Jiang ◽  
Chunlin Chen ◽  
Xuexi Yan ◽  
Ang Tao ◽  
...  

2009 ◽  
Vol 60-61 ◽  
pp. 357-360 ◽  
Author(s):  
Han Chen ◽  
Hua Rong ◽  
Ming Wang

The stress gradient of a deposited thin-film is a mechanical parameter that affects the performance of MEMS devices, so in-situ measuring stress gradient of a thin-film is great significant. A new in-situ measuring method based on a center-anchored circular plate is presented. The Mirau interferometer has been used to measure the out-of-plane height at the edge of circular plate, then the curvature radius of the plate and the stress gradient of the film can be calculated. The measuring method has been verified by CoventorWare. The accuracy of the presented measuring method is ideal. The advantages of the method also have been discussed.


2001 ◽  
Vol 666 ◽  
Author(s):  
Hiromichi Ohta ◽  
Masahiro Orita ◽  
Masahiro Hirano ◽  
Hideo Hosono

ABSTRACTIndium-tin-oxide films were grown hetero-epitaxially on YSZ surface at a substrate temperature of 900 °C, and their surface microstructures were observed by using atomic force microscopy. ITO films grown on (111) surface of YSZ exhibited very high crystal quality; full width at half maximum of out-of-plane rocking curve was 54 second. The ITO was grown spirally, with flat terraces and steps corresponding to (222) plane spacing of 0.29 nm. Oxygen pressure during film growth is another key factor to obtain atomically flat surfaced ITO thin film.


Sign in / Sign up

Export Citation Format

Share Document