scholarly journals Coexistence of diffusive resistance and ballistic persistent current in disordered metallic rings with rough edges: Possible origin of puzzling experimental values

2013 ◽  
Vol 88 (12) ◽  
Author(s):  
J. Feilhauer ◽  
M. Moško
2009 ◽  
Vol 155 ◽  
pp. 87-104 ◽  
Author(s):  
Santanu K. Maiti

We explore the behavior of persistent current and low-field magnetic response in mesoscopic one-channel rings and multi-channel cylinders within the tight-binding framework. We show that the characteristic properties of persistent current strongly depend on total number of electrons , chemical potential μ, randomness and total number of channels. The study of low-field magnetic response reveals that only for one-channel rings with fixed , sign of the low-field currents can be predicted exactly, even in the presence of disorder. On the other hand, for multi-channel cylinders, sign of the low-field currents cannot be mentioned exactly, even in the perfect systems with fixed as it significantly depends on the choices of , μ, number of channels, disordered configurations, etc.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
A.N. Shushpanov ◽  
◽  
A.Ya. Vasin ◽  
V.M. Raykova ◽  
G.G. Gadzhiev ◽  
...  

The article considers two intermediate products of positive photoresists (1,2-naphthoquinonediazide-(2)-5-sulfonic acid of monosodium salt — Dye M and 1,2-naphthoquinonediazide-(2)-5-sulfochloride — Dye N2) from the standpoint of the tendency to explosive transformation. The experimental values of flash points determined on the OTP setup were 130 °C for Dye M and 95 °C for Dye N2. These values are close to the temperatures of the beginning of intensive exothermic decomposition (132 and 111 °C, respectively) obtained by thermogravimetric analysis. In addition, this analysis showed the presence of exothermic peaks in the studied samples both in the air and in an inert atmosphere of helium, which is a necessary condition for the manifestation of a tendency to explosive transformation. To confirm the possibility of explosive transformation, the flash points of substances were also determined by the calculation method according to the formula, which is a consequence of the problem of thermal explosion during convective heat exchange with the environment, and gave a result close to the experimental one (the values were 138 and 105 °C, respectively). For this calculation the following was used: the kinetic parameters determined by the Kissinger method, the values of the density of substances determined on an automatic pycnometer, as well as the values of the heat of explosive transformation obtained with the help of the Real computer thermodynamic program. The research results confirming the tendency of the investigated compounds to explosive transformation, as well as the critical temperatures, exceeding which is unacceptable, were transferred to the production of FGUP GNTs NIOPIK to create a safe technological process, safe storage and transportation conditions. Considering the accuracy of the measuring devices, the process temperature should not exceed 125 °C for Dye M and 90 °C for Dye N2. The conducted studies and calculations show that the computational and experimental approaches have good convergence, give values in a close temperature range, and increase the reliability of the obtained results.


2020 ◽  
Author(s):  
Maximilian Kuhn ◽  
Stuart Firth-Clark ◽  
Paolo Tosco ◽  
Antonia S. J. S. Mey ◽  
Mark Mackey ◽  
...  

Free energy calculations have seen increased usage in structure-based drug design. Despite the rising interest, automation of the complex calculations and subsequent analysis of their results are still hampered by the restricted choice of available tools. In this work, an application for automated setup and processing of free energy calculations is presented. Several sanity checks for assessing the reliability of the calculations were implemented, constituting a distinct advantage over existing open-source tools. The underlying workflow is built on top of the software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1 force fields. It was validated on two datasets originally composed by Schrödinger, consisting of 14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with experimental values. For the larger dataset the average correlation coefficient Rp was 0.70 ± 0.05 and average Kendall’s τ was 0.53 ± 0.05 which is broadly comparable to or better than previously reported results using other methods. <br>


2019 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2020 ◽  
Vol 2020 (9) ◽  
pp. 35-46
Author(s):  
Aleksandr Skachkov ◽  
Viktor Vasilevskiy ◽  
Aleksey Yuhnevskiy

The consideration of existing methods for a modal analysis has shown a possibility for the lowest frequency definition of bending vibrations in a coach car body in a vertical plane based on an indirect method reduced to the assessment of the bending stiffness of the one-dimensional model as a Bernoulli-Euler beam with fragment-constant parameters. The assessment mentioned can be obtained by means of the comparison of model deflections (rated) and a prototype (measured experimentally upon a natural body) with the use of the least-squares method that results in the necessity of the solution of the multi-dimensional problem with the reverse coefficient. The introduction of the hypothesis on ratability of real bending stiffness of the prototype and easily calculated geometrical stiffness of a model reduces a multi-dimensional problem incorrect according to Adamar to the simplest search of the extremum of one variable function. The procedure offered for the indirect assessment of bending stiffness was checked through the solution of model problems. The values obtained are offered to use for the assessment of the lowest frequency of bending vibrations with the aid of Ritz and Grammel methods. In case of rigid poles it results in formulae for frequencies into which there are included directly the experimental values of deflections.


2019 ◽  
Author(s):  
Chem Int

The new adsorbents were prepared from Moroccan oil shale by chemical and physical process .In this study, experimental Plackett-Burman has been used as a screening method to study six factors for the development of materials to adsorbent basis of oil shale Moroccan. The factors have been identified by two levels, To Know temperature (°C), Processing time (min), mass ratio (m precursor/m acid), Pretreatment mixture the precursor with acid, origin of the raw material and type of the activating agent (H2SO4, H3PO4).And it was chosen as a response The maximum quantity of adsorption of the molecule of Methylene blue (Qads in mg/g) and the specific surface measure by the method bet (Sbet in m2/g), The predicted values were in agreement with the experimental values with a coefficient of determination (R2) of 0.98. The model has been validated by experiments subsequent to optimized conditions. The experimental data processing by software JMP 7 showed that the processing temperature The report of oil shale on the acid and activation time were the important effect on the maximal capacity of adsorption of methylene blue. The sample prepared at 237 °C during 215 min with pre-processing has a maximal capacity of adsorption equal to 54mg/g according to model of adsorption of Langmuir and SBET equal to 143 m2/g.


Sign in / Sign up

Export Citation Format

Share Document