Stress-induced anisotropic diffusion in alloys: Complex Si solute flow near a dislocation core in Ni

2013 ◽  
Vol 88 (13) ◽  
Author(s):  
Thomas Garnier ◽  
Venkateswara R. Manga ◽  
Dallas R. Trinkle ◽  
Maylise Nastar ◽  
Pascal Bellon
Author(s):  
J. C. Barry ◽  
H. Alexander

Dislocations in silicon produced by plastic deformation are generally dissociated into partials. 60° dislocations (Burgers vector type 1/2[101]) are dissociated into 30°(Burgers vector type 1/6[211]) and 90°(Burgers vector type 1/6[112]) dislocations. The 30° partials may be either of “glide” or “shuffle” type. Lattice images of the 30° dislocation have been obtained with a JEM 100B, and with a JEM 200Cx. In the aforementioned experiments a reasonable but imperfect match was obtained with calculated images for the “glide” model. In the present experiment direct structure images of 30° dislocation cores have been obtained with a JEOL 4000EX. It is possible to deduce the 30° dislocation core structure by direct inspection of the images. Dislocations were produced by compression of single crystal Si (sample preparation technique described in Alexander et al.).


Author(s):  
J.-Y. Wang ◽  
Y. Zhu ◽  
A.H. King ◽  
M. Suenaga

One outstanding problem in YBa2Cu3O7−δ superconductors is the weak link behavior of grain boundaries, especially boundaries with a large-angle misorientation. Increasing evidence shows that lattice mismatch at the boundaries contributes to variations in oxygen and cation concentrations at the boundaries, while the strain field surrounding a dislocation core at the boundary suppresses the superconducting order parameter. Thus, understanding the structure of the grain boundary and the grain boundary dislocations (which describe the topology of the boundary) is essential in elucidating the superconducting characteristics of boundaries. Here, we discuss our study of the structure of a Σ5 grain boundary by transmission electron microscopy. The characterization of the structure of the boundary was based on the coincidence site lattice (CSL) model.Fig.l shows two-beam images of the grain boundary near the projection. An array of grain boundary dislocations, with spacings of about 30nm, is clearly visible in Fig. 1(a), but invisible in Fig. 1(b).


2019 ◽  
Vol 2019 (1) ◽  
pp. 69-74
Author(s):  
Aldo Barba ◽  
Ivar Farup ◽  
Marius Pedersen

In the paper "Colour-to-Greyscale Image Conversion by Linear Anisotropic Diffusion of Perceptual Colour Metrics", Farup et al. presented an algorithm to convert colour images to greyscale. The algorithm produces greyscale reproductions that preserve detail derived from local colour differences in the original colour image. Such detail is extracted by using linear anisotropic diffusion to build a greyscale reproduction from a gradient of the original image that is in turn calculated using Riemannised colour metrics. The purpose of the current paper is to re-evaluate one of the psychometric experiments for these two methods (CIELAB L* and anisotropic Δ99) by using a flipping method to compare their resulting images instead of the side by side method used in the original evaluation. In addition to testing the two selected algorithms, a third greyscale reproduction was manually created (colour graded) using a colour correction software commonly used to process motion pictures. Results of the psychometric experiment found that when comparing images using the flipping method, there was a statistically significant difference between the anisotropic Δ99 and CIELAB L* conversions that favored the anisotropic method. The comparison between Δ99 conversion and the manually colour graded image also showed a statistically significant difference between them, in this case favoring the colour graded version.


2013 ◽  
Vol 32 (11) ◽  
pp. 3218-3220
Author(s):  
Jin YANG ◽  
Zhi-qin LIU ◽  
Yao-bin WANG ◽  
Xiao-ming GAO

2021 ◽  
pp. 100453
Author(s):  
Hetian Chen ◽  
Di Yi ◽  
Ben Xu ◽  
Jing Ma ◽  
Cewen Nan

2014 ◽  
Vol 125 ◽  
pp. 373-393 ◽  
Author(s):  
Thomas Gimmi ◽  
Olivier X. Leupin ◽  
Jost Eikenberg ◽  
Martin A. Glaus ◽  
Luc R. Van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document