scholarly journals Coalescence of exceptional points and phase diagrams for one-dimensionalPT-symmetric photonic crystals

2015 ◽  
Vol 92 (23) ◽  
Author(s):  
Kun Ding ◽  
Z. Q. Zhang ◽  
C. T. Chan
2020 ◽  
Vol 10 (3) ◽  
pp. 823 ◽  
Author(s):  
Fangmei Liu ◽  
Dong Zhao ◽  
Hui Cao ◽  
Bin Xu ◽  
Wuxiong Xu ◽  
...  

We explored exceptional points (EPs) in one dimensional non-Hermitian photonic crystals incorporated with a defect. The defect was asymmetric with respect to the center. Two EPs could be derived by modulating the normalized frequency and the gain-loss coefficient of defect. The reflection coefficient complex phase changed dramatically around EPs, and the change in complex phase was π at EPs. The electric field of EPs was mainly restricted to the defect, which can induce a giant Goos–Hänchen (GH) shift. Moreover, we found a coherent perfect absorption-laser point (CPA-LP) in the structure. A giant GH shift also existed around the CPA-LP. The study may have found applications in highly sensitive sensors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Weixuan Zhang ◽  
Bing Yang ◽  
Tong Wu ◽  
Xiangdong Zhang

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5420
Author(s):  
Simeon Trendafilov ◽  
Jeffery W. Allen ◽  
Monica S. Allen ◽  
Sukrith U. Dev ◽  
Ziyuan Li ◽  
...  

Semiconductor nanowire arrays have been demonstrated as promising candidates for nanoscale optoelectronics applications due to their high detectivity as well as tunable photoresponse and bandgap over a wide spectral range. In the infrared (IR), where these attributes are more difficult to obtain, nanowires will play a major role in developing practical devices for detection, imaging and energy harvesting. Due to their geometry and periodic nature, vertical nanowire and nanopillar devices naturally lend themselves to waveguide and photonic crystal mode engineering leading to multifunctional materials and devices. In this paper, we computationally develop theoretical basis to enable better understanding of the fundamental electromagnetics, modes and couplings that govern these structures. Tuning the photonic response of a nanowire array is contingent on manipulating electromagnetic power flow through the lossy nanowires, which requires an intimate knowledge of the photonic crystal modes responsible for the power flow. Prior published work on establishing the fundamental physical modes involved has been based either on the modes of individual nanowires or numerically computed modes of 2D photonic crystals. We show that a unified description of the array key electromagnetic modes and their behavior is obtainable by taking into account modal interactions that are governed by the physics of exceptional points. Such models that describe the underlying physics of the photoresponse of nanowire arrays will facilitate the design and optimization of ensembles with requisite performance. Since nanowire arrays represent photonic crystal slabs, the essence of our results is applicable to arbitrary lossy photonic crystals in any frequency range.


Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


Nature ◽  
2020 ◽  
Vol 585 (7826) ◽  
pp. 506-507
Author(s):  
John C. Crocker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document