Theoretical study of evaporation-residue cross sections for fusion reactions at energies near the Coulomb barrier

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Bing Wang ◽  
Zi-Yang Yue ◽  
Wei-Juan Zhao
2013 ◽  
Vol 22 (08) ◽  
pp. 1350061 ◽  
Author(s):  
A. SULAKSONO

This paper studies the formation cross-sections of super heavy (SH) nuclei in some cold fusion reactions of radioactive neutron-rich projectiles with double-magic 208 Pb target. In this study, the cross-sections of capture, fusion and evaporation residues in one- and two-neutron (1n and 2n) channels are calculated by using neutron-rich Fe , Ni and Zn projectiles are compared to the cross-sections calculated using stable Fe , Ni and Zn projectiles. The heights of fusion barrier and their positions in all reactions considered in this study are also compared to the heights and positions calculated using the estimation method proposed by Dutt and Puri. For cold fusion reactions with stable Fe , Ni and Zn projectiles, the heights of fusion barrier and the cross-sections of evaporation residues in 1n and 2n channels are compared to their corresponding experimental data. In general, for reactions using projectiles with the same proton number, the neutron-rich projectile is found to yield relatively-heavier mass of SH nucleus and larger evaporation residue cross-section, compared to those of the corresponding stable projectiles. However, in certain reactions, the cross-sections of neutron-rich projectile can be slightly larger or slightly smaller than that of the corresponding stable projectile. This behavior is highly affected by the charge of projectile and the fission barrier of the formed compound nucleus (CN). In addition, the 292114 is found to be the heaviest compound nucleus formed in cold fusion reaction by using neutron-rich nuclei as the projectile, but the cross-section of evaporation residue in one-neutron channel is still around few pico barns (pb).


2019 ◽  
Vol 52 (382) ◽  
pp. MISC6-MISC8
Author(s):  
Aurora Tumino

Carbon burning powers pivotal scenarios that influence the fate of stars, such as the late evolutionary stages of massive stars (exceeding eight solar masses), superbursts from accreting neutron stars and progenitors of Type Ia supernovae. It proceeds through the 12C+12C fusion reactions that produce an \( \alpha \) particle and neon-20 or a proton and sodium-23 —that is, 12C(12C, \( \alpha \) )20Ne and 12C(12C, \( p \))23Na— at temperatures greater than \( 0.4 \cdot 10^9 \) K, corresponding to astrophysical energies exceeding a megaelectronvolt (MeV), at which such nuclear reactions are more likely to occur in stars. The cross-sections for those carbon fusion reactions (probabilities that are required to calculate the rate of the reactions) have never been measured below 2 MeV because of exponential suppression arising from the Coulomb barrier (the Coulomb barrier is around 6 MeV). The reference rate at temperatures below \( 1.2\cdot 10^9 \) K relies on extrapolations that ignore the effects of possible low-lying resonances. In Tumino et al. (2018), we report the measurement of the 12C(12C, \( \alpha_{0,1} \)) 20Ne and 12C(12C, \( p_{0,1} \)) 23Na reaction rates (where the subscripts 0 and 1 stand for the ground and first excited states of 20Ne and 23Na, respectively) at centre-of-mass energies from 2.7 to 0.8 MeV using the Trojan Horse method and the deuteron in 14N. This is an indirect technique aiming at measuring low-energy nuclear reactions unhindered by the Coulomb barrier and free of electron screening. The deduced cross-sections exhibit several resonances that are responsible for a very large increase of the reaction rate at the relevant temperatures. In particular, around \( 5\cdot 10^8 \) K, the reaction rate is more than 25 times larger than the reference value. This finding may have significant implications such as lowering the temperatures and densities required for the ignition of carbon burning in massive stars and decreasing the superburst ignition depth in accreting neutron stars in the direction to reconcile observations with theoretical models.


2020 ◽  
pp. 1-8
Author(s):  
H.C. Manjunatha ◽  
L. Seenappa ◽  
N. Sowmya ◽  
K.N. Sridhar

We have studied the 54–60Fe-induced fusion reactions to synthesize the superheavy nuclei296–302120 by studying the compound nucleus formation probability, survival probability, and evaporation residue cross-sections. The comparison of the evaporation residue cross-section for different targets reveals that the evaporation residue cross-section is larger for projectile target combination 58Fe+243Pu→301120. We have identified the most probable 58Fe-induced fusion reactions to synthesize superheavy nuclei 296–302120. The suggested reactions may be useful to synthesize the superheavy element Z = 120.


2019 ◽  
Vol 64 (5) ◽  
pp. 363
Author(s):  
M. Aygun

The comprehensive theoretical study is performed to determine the best proximity potentials in reproducing 6,8He + 65Cu fusion reactions. Twenty three different versions of proximity potentials that consist of Prox 66, Prox 76, Prox 77, Prox 79, Prox 81-I, Prox 81-II, Prox 81-III, Prox 84, Prox 88, Mod-Prox-88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III, Prox 2010, BW 91, AW 95, Bass 73, Bass 77, Bass 80, CW 76, Ngo 80, and D are used. The theoretical results are compared with experimental data on 6,8He + 65Cu fusion reactions. The appropriate proximity potentials are determined.


1984 ◽  
Vol 419 (3) ◽  
pp. 571-588 ◽  
Author(s):  
H.-G. Clerc ◽  
J.G. Keller ◽  
C.-C. Sahm ◽  
K.-H. Schmidt ◽  
H. Schulte ◽  
...  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Xing-Jian Lv ◽  
Zi-Yang Yue ◽  
Wei-Juan Zhao ◽  
Bing Wang

2016 ◽  
Vol 25 (06) ◽  
pp. 1650043 ◽  
Author(s):  
S. A. Seyyedi

The reactions including the stable weakly bound nucleus 9Be have been studied using the classical trajectory model accompanied with the experimental breakup function and the Aage-Winther interaction potential (AW95). In these calculations, the no-capture breakup and the incomplete fusion cross-sections as well as their competition at around the Coulomb barrier have been investigated. Our calculations showed that at a given far-Coulomb-barrier energy the incomplete fusion reaction in different distributions of angular momentum and energies can dominate the no-capture breakup reaction. This dominating process is reversed at the near-barrier energies.


Sign in / Sign up

Export Citation Format

Share Document