Reduction of the neutron imaginary potential off the stability line and its possible impact on neutron capture rates

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
A. V. Voinov ◽  
K. Brandenburg ◽  
C. R. Brune ◽  
R. Giri ◽  
S. M. Grimes ◽  
...  
2018 ◽  
Vol 193 ◽  
pp. 04007
Author(s):  
J. Lerendegui-Marco ◽  
C. Guerrero ◽  
C. Domingo-Pardo ◽  
A. Casanovas ◽  
R. Dressler ◽  
...  

Neutron capture cross sections are among the main inputs for nucleosynthesis network calculations. Although well known for the majority of the stable isotopes, this quantity is still unknown for most of the unstable isotopes of interest. A recent collaboration between ILL, PSI, U. Sevilla and IFIC aims at producing the isotopes of interest at ILL, preparing suitable targets at PSI, and measuring their capture cross sections at facilities such as n_TOF/CERN, LiLiT and the Budapest Research Reactor (BRR). This work is focused on the description of the different beams and techniques and shows some highlights of the preliminary results of the capture measurements on 171Tm, 147Pm and 204Tl, along with the future plans for 79Se and 163Ho.


2019 ◽  
Vol 99 (3) ◽  
Author(s):  
M. Dan ◽  
G. Singh ◽  
R. Chatterjee ◽  
Shubhchintak

AIP Advances ◽  
2014 ◽  
Vol 4 (4) ◽  
pp. 041008 ◽  
Author(s):  
R. Surman ◽  
M. Mumpower ◽  
R. Sinclair ◽  
K. L. Jones ◽  
W. R. Hix ◽  
...  

Author(s):  
Yuki Maehara ◽  
Masatoshi Kondo ◽  
Minoru Takahashi

For the development of the liquid lithium (Li) jet target system for the boron neutron capture therapy (BNCT), the stability of the Li jet is important. The purpose of the present study is to investigate the characteristics of the disturbances and the droplet formation of a water jet flow at high velocity. The experimental studies for a water jet flow were performed to simulate the liquid Li jet flow. The nozzles in the experiment had a rectangular flow channel with the gap of 0.5 mm and the length of 10 mm and 70 mm. The water flow velocities in these nozzles were 5 m/s, 10 m/s or 15 m/s. The stability of the water jet flow was investigated by the observation of the surface disturbance using a high speed video camera. The formation of water droplet from the water jet flow was detected, and the characteristics of the droplet formation were analyzed using Phase Doppler Anemometry (PDA). Then, the surface disturbance of the jet flow was characterized by the characteristics of the droplet generation. In the experiment with 10mm length of nozzle, a lot of droplets are generated from the jet surface and the surface is considered to be unstable. On the other hand the smooth jet surface and the stable jet are made near nozzle outlet. In the experiment with 70mm length of nozzle, few droplets are generated from the surface of the jet and the surface of the jet is very smooth especially for the place near nozzle outlet. It was concluded that the droplet generation from the surface of the water jet was promoted by the distortion of the jet surface. Also the surfaces of the jet flow made by the nozzle having the length of 70 mm was smoother than those in the tests with the nozzle having the length of 10 mm. The large eddy in the flow must be dumped before the nozzle outlet because the turbulence was fully developed in the nozzle.


1993 ◽  
Vol 80 (1-4) ◽  
pp. 1219-1238 ◽  
Author(s):  
K. Matsuta ◽  
A. Ozawa ◽  
Y. Nojiri ◽  
T. Minamisono ◽  
M. Fukuda ◽  
...  

2010 ◽  
Author(s):  
Rene Reifarth ◽  
Michael Heil ◽  
Ralf Plag ◽  
U. Besserer ◽  
A. Couture ◽  
...  

Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Bryn Knight ◽  
Liliana Caballero

Neutron captures are likely to occur in the crust of accreting neutron stars (NSs). Their rate depends on the thermodynamic state of neutrons in the crust. At high densities, neutrons are degenerate. We find degeneracy corrections to neutron capture rates off nuclei, using cross sections evaluated with the reaction code TALYS. We numerically integrate the relevant cross sections over the statistical distribution functions of neutrons at thermodynamic conditions present in the NS crust. We compare our results to analytical calculations of these corrections based on a power-law behavior of the cross section. We find that although an analytical integration can simplify the calculation and incorporation of the results for nucleosynthesis networks, there are uncertainties caused by departures of the cross section from the power-law approach at energies close to the neutron chemical potential. These deviations produce non-negligible corrections that can be important in the NS crust.


Sign in / Sign up

Export Citation Format

Share Document