scholarly journals Material matter effects in gravitational UV/IR mixing

2020 ◽  
Vol 101 (8) ◽  
Author(s):  
Joseph Bramante ◽  
Elizabeth Gould
2016 ◽  
pp. 3524-3528
Author(s):  
Casey Ray McMahon

In this paper, I discuss the theory behind the use of a dense, concentrated neutron particle-based beam. I look at the particle based physics behind such a beam, when it is focused against solid material matter. Although this idea is still only theoretical, it appears that such a beam may be capable of disrupting the stability of the atoms within solid matter- in some cases by passing great volumes of neutrons between the electron and nucleus thus effectively “shielding” the electron from the charge of the nucleus. In other cases, by disrupting the nucleus by firing neutrons into it, disrupting the nucleus and weakening its bond on electrons. In either case- the resulting effect would be a disruption of the atom, which in the case of material matter would cause said material matter to fail, which would appear to the observer as liquification with some plasma generation. Thus, a dense neutron particle based beam could be used to effectively liquefy material matter. Such a beam could bore through rock, metal, or even thick, military grade armour, like that used on tanks- causing such materials to rapidly liquefy. The denser and thicker the neutron beam, the more devastating the effect of the beam- thus the faster material matter will liquefy and the greater the area of liquification. Such a beam would have applications in Defence, mining and drilling operations.


2021 ◽  
Vol 6 (3) ◽  
pp. 034001
Author(s):  
F. B. Rosmej ◽  
V. A. Astapenko ◽  
E. S. Khramov

2001 ◽  
Vol 16 (29) ◽  
pp. 1881-1886
Author(s):  
MOHAN NARAYAN ◽  
S. UMA SANKAR

Recently it is advocated that high intensity and low energy (Eν~2 GeV ) neutrino beams should be built to probe the (13) mixing angle ϕ to a level of a few parts in 104. Experiments using such beams will have better signal-to-background ratio in searches for νμ→νe oscillations. We propose that such experiments can also determine the sign of Δ31 even if the beam consists of neutrinos only. By measuring the νμ→νe transitions in two different energy ranges, the effects due to propagation of neutrinos through earth's crust can be isolated and the sign of Δ31 can be determined. If the sensitivity of an experiment to ϕ is ε, then the same experiment is automatically sensitive to matter effects and the sign of Δ31 for values of ϕ≥2ε.


2011 ◽  
Vol 2011 (5) ◽  
Author(s):  
M. C. Gonzalez-Garcia ◽  
Michele Maltoni ◽  
Jordi Salvado
Keyword(s):  

2018 ◽  
Vol 171 ◽  
pp. 18015
Author(s):  
Xinjie Huang

In these proceedings, we present the latest measurements of J/ψ and ϒ by the STAR experiment. The J/ψ and ϒ production measured in p+p collisions provide new baselines for similar measurements in Au+Au collisions, while the measurements in p+Au collisions can help quantify the cold nuclear matter effects. The J/ψ υ2 is measured in both U+U and Au+Au collisions to place constraints on the amount of J/ψ arising from recombination of deconfined charm and anti-charm pairs. Furthermore, the nuclear modification factors for ground and excited ϒ states as a function of transverse momentum and centrality are presented, and compared to those measured at the LHC as well as to theoretical calculations.


Sign in / Sign up

Export Citation Format

Share Document