scholarly journals Model independent comparison of supernova and strong lensing cosmography: Implications for the Hubble constant tension

2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Shivam Pandey ◽  
Marco Raveri ◽  
Bhuvnesh Jain
2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Weiqiang Yang ◽  
Eleonora Di Valentino ◽  
Supriya Pan ◽  
Arman Shafieloo ◽  
Xiaolei Li

Author(s):  
Carlos A. P. Bengaly ◽  
Uendert Andrade ◽  
Jailson S. Alcaniz

Abstract We address the $$\simeq 4.4\sigma $$≃4.4σ tension between local and the CMB measurements of the Hubble Constant using simulated Type Ia Supernova (SN) data-sets. We probe its directional dependence by means of a hemispherical comparison through the entire celestial sphere as an estimator of the $$H_0$$H0 cosmic variance. We perform Monte Carlo simulations assuming isotropic and non-uniform distributions of data points, the latter coinciding with the real data. This allows us to incorporate observational features, such as the sample incompleteness, in our estimation. We obtain that this tension can be alleviated to $$3.4\sigma $$3.4σ for isotropic realizations, and $$2.7\sigma $$2.7σ for non-uniform ones. We also find that the $$H_0$$H0 variance is largely reduced if the data-sets are augmented to 4 and 10 times the current size. Future surveys will be able to tell whether the Hubble Constant tension happens due to unaccounted cosmic variance, or whether it is an actual indication of physics beyond the standard cosmological model.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1966
Author(s):  
Tanja Petrushevska

Strong lensing by galaxy clusters can be used to significantly expand the survey reach, thus allowing observation of magnified high-redshift supernovae that otherwise would remain undetected. Strong lensing can also provide multiple images of the galaxies that lie behind the clusters. Detection of strongly lensed Type Ia supernovae (SNe Ia) is especially useful because of their standardizable brightness, as they can be used to improve either cluster lensing models or independent measurements of cosmological parameters. The cosmological parameter, the Hubble constant, is of particular interest given the discrepancy regarding its value from measurements with different approaches. Here, we explore the feasibility of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) of detecting strongly lensed SNe in the field of five galaxy clusters (Abell 1689 and Hubble Frontier Fields clusters) that have well-studied lensing models. Considering the 88 systems composed of 268 individual multiple images in the five cluster fields, we find that the LSST will be sensitive to SNe Ia (SNe IIP) exploding in 41 (23) galaxy images. The range of redshift of these galaxies is between 1.01<z<3.05. During its 10 years of operation, LSST is expected to detect 0.2±0.1 SN Ia and 0.9±0.3 core collapse SNe. However, as LSST will observe many more massive galaxy clusters, it is likely that the expectations are higher. We stress the importance of having an additional observing program for photometric and spectroscopic follow-up of the strongly lensed SNe detected by LSST.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Alexander Bonilla ◽  
Suresh Kumar ◽  
Rafael C. Nunes

AbstractGaussian processes (GP) provide an elegant and model-independent method for extracting cosmological information from the observational data. In this work, we employ GP to perform a joint analysis by using the geometrical cosmological probes such as Supernova Type Ia (SN), Cosmic chronometers (CC), Baryon Acoustic Oscillations (BAO), and the H0LiCOW lenses sample to constrain the Hubble constant $$H_0$$ H 0 , and reconstruct some properties of dark energy (DE), viz., the equation of state parameter w, the sound speed of DE perturbations $$c^2_s$$ c s 2 , and the ratio of DE density evolution $$X = \rho _\mathrm{de}/\rho _\mathrm{de,0}$$ X = ρ de / ρ de , 0 . From the joint analysis SN+CC+BAO+H0LiCOW, we find that $$H_0$$ H 0 is constrained at 1.1% precision with $$H_0 = 73.78 \pm 0.84\ \hbox {km}\ \hbox {s}^{-1}\,\hbox {Mpc}^{-1}$$ H 0 = 73.78 ± 0.84 km s - 1 Mpc - 1 , which is in agreement with SH0ES and H0LiCOW estimates, but in $$\sim 6.2 \sigma $$ ∼ 6.2 σ tension with the current CMB measurements of $$H_0$$ H 0 . With regard to the DE parameters, we find $$c^2_s < 0$$ c s 2 < 0 at $$\sim 2 \sigma $$ ∼ 2 σ at high z, and the possibility of X to become negative for $$z > 1.5$$ z > 1.5 . We compare our results with the ones obtained in the literature, and discuss the consequences of our main results on the DE theoretical framework.


2020 ◽  
Vol 500 (1) ◽  
pp. L22-L26
Author(s):  
Eleonora Di Valentino ◽  
Olga Mena

ABSTRACT Models involving an interaction between the dark matter and the dark energy sectors have been proposed to alleviate the long-standing Hubble constant tension. In this paper, we analyse whether the constraints and potential hints obtained for these interacting models remain unchanged when using simulated Planck data. Interestingly, our simulations indicate that a dangerous fake detection for a non-zero interaction among the dark matter and the dark energy fluids could arise when dealing with current cosmic microwave background (CMB) Planck measurements alone. The very same hypothesis is tested against future CMB observations, finding that only cosmic variance limited polarization experiments, such as PICO or PRISM, could be able to break the existing parameter degeneracies and provide reliable cosmological constraints. This paper underlines the extreme importance of confronting the results arising from data analyses with those obtained with simulations when extracting cosmological limits within exotic cosmological scenarios.


2018 ◽  
Vol 27 (05) ◽  
pp. 1850054 ◽  
Author(s):  
Jun Chen

In this paper, the cosmic transparency is constrained by using the latest baryon acoustic oscillation (BAO) data and the type Ia supernova data with a model-independent method. We find that a transparent universe is consistent with observational data at the [Formula: see text] confidence level, except for the case of BAO+ Union 2.1 without the systematic errors where a transparent universe is favored only at the [Formula: see text] confidence level. To investigate the effect of the uncertainty of the Hubble constant on the test of the cosmic opacity, we assume [Formula: see text] to be a free parameter and obtain that the observations favor a transparent universe at the [Formula: see text] confidence level.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050105
Author(s):  
Sixuan Zhang ◽  
Shuo Cao ◽  
Jia Zhang ◽  
Tonghua Liu ◽  
Yuting Liu ◽  
...  

In this paper, we investigate the expected constraints on the Hubble constant from the gravitational-wave standard sirens, in a cosmological-model-independent way. In the framework of the well-known Hubble law, the GW signal from each detected binary merger in the local universe ([Formula: see text]) provides a measurement of luminosity distance [Formula: see text] and thus the Hubble constant [Formula: see text]. Focusing on the simulated data of gravitational waves from the third-generation gravitational wave detector (the Einstein Telescope, ET), combined with the redshifts determined from electromagnetic counter parts and host galaxies, one can expect the Hubble constant to be constrained at the precision of [Formula: see text] with 20 well-observed binary neutron star (BNS) mergers. Additional standard-siren measurements from other types of future gravitational-wave sources (NS-BH and BBH) will provide more precision constraints of this important cosmological parameter. Therefore, we obtain that future measurements of the luminosity distances of gravitational waves sources will be much more competitive than the current analysis, which makes it expectable more vigorous and convincing constraints on the Hubble constant in a cosmological-model-independent way.


Sign in / Sign up

Export Citation Format

Share Document