standard cosmological model
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (12) ◽  
pp. 049
Author(s):  
Noah Sailer ◽  
Emanuele Castorina ◽  
Simone Ferraro ◽  
Martin White

Abstract An observational program focused on the high redshift (2<z<6) Universe has the opportunity to dramatically improve over upcoming LSS and CMB surveys on measurements of both the standard cosmological model and its extensions. Using a Fisher matrix formalism that builds upon recent advances in Lagrangian perturbation theory, we forecast constraints for future spectroscopic and 21-cm surveys on the standard cosmological model, curvature, neutrino mass, relativistic species, primordial features, primordial non-Gaussianity, dynamical dark energy, and gravitational slip. We compare these constraints with those achievable by current or near-future surveys such as DESI and Euclid, all under the same forecasting formalism, and compare our formalism with traditional linear methods. Our Python code FishLSS — used to calculate the Fisher information of the full shape power spectrum, CMB lensing, the cross-correlation of CMB lensing with galaxies, and combinations thereof — is publicly available.


2021 ◽  
Vol 923 (1) ◽  
pp. 98
Author(s):  
Yidong Xu ◽  
Bin Yue ◽  
Xuelei Chen

Abstract The absorption feature in the global spectrum is likely the first 21 cm observable from the cosmic dawn, which provides valuable insights into the earliest history of structure formation. We run a set of high-resolution hydrodynamic simulations of early structure formation to assess the effect of nonlinear structure formation on the maximum absorption level (i.e., assuming the spin temperature coupling is saturated) of the global 21 cm spectrum in the standard cosmological framework. We ignore the star formation and feedbacks, which also tend to reduce the absorption signal, but take into account the inevitable nonlinear density fluctuations in the intergalactic medium (IGM), shock-heating, and Compton-heating, which can reduce the absorption level. We found that the combination of these reduced the maximum absorption signal by ∼15% at redshift 17, as compared with the homogeneous or linearly-fluctuating IGM. These effects have to be carefully accounted for when interpreting the observational results, especially when considering the necessity of introducing new physics.


2021 ◽  
Vol 2021 (11) ◽  
pp. 014
Author(s):  
Uendert Andrade ◽  
Dhayaa Anbajagane ◽  
Rodrigo von Marttens ◽  
Dragan Huterer ◽  
Jailson Alcaniz

2021 ◽  
Vol 2081 (1) ◽  
pp. 012019
Author(s):  
F Greco ◽  
I V Krasnyy

Abstract We developed the model, and carried out its discussion at the PIRT-2021 conference, within the framework of the research topic “External Forcing on Volcanoes and Volcanic Processes: Observations, Analysis and Implications” announced by the journal “Frontiers in Earth Science” in October 2020. Besides other, external processes considered in this Research Topic included astronomical. In this study, in the category “Hypothesis and Theory”, we investigate how changes in the position of large bodies of the Solar system can cause natural phenomena, associated with the movement of free masses, such as volcanism, earthquakes and landslides in the lithosphere, as well as various catastrophic events in the atmosphere and hydrosphere. The analysis has shown that the discovered phenomena of celestial bodies’ alignments accompanying manifestations of natural phenomena require going beyond the standard cosmological model and clarify the fundamental mechanism of gravity. We propose the novel Bidirectional Pushing Gravitation model (BPG), which, in addition to application in Earth Sciences, may occur useful in Astrophysics, Cosmology and Gravitation research.


2021 ◽  
Vol 66 (9) ◽  
pp. 739
Author(s):  
S.L. Parnovsky

The tensions concerning the values of Hubble constant obtained from the early and the late Universe data pose a significant challenge to modern cosmology. Possible modifications of the flat homogeneous isotropic cosmological ΛCDM model are considered, in which the Universe contains the dark energy, cold baryonic matter, and dark matter. They are based on general relativity and satisfy two requirements: (1) the value of the Hubble constant calculated from the value of the Hubble parameter at the recombination by formulas of the flat ΛCDM model, should be equal to 92% of the one based on low-redshift observations; (2) deviations from the ΛCDM model should not lead to effects that contradict astronomical observations and estimations obtained thereof. The analysis showed that there are few opportunities for the choice. Either we should consider DM with negative pressure −pdmc2 ≪ pdm < 0, which weakly affects the evolution of the Universe and the observed manifestations of DM, or we should admit the mechanism of generation of new matter, for example, by the dark energy decay.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Tonghua Liu ◽  
Shuo Cao ◽  
Sixuan Zhang ◽  
Xiaolong Gong ◽  
Wuzheng Guo ◽  
...  

AbstractIn this paper, we carry out an assessment of cosmic distance duality relation (CDDR) based on the latest observations of HII galaxies acting as standard candles and ultra-compact structure in radio quasars acting as standard rulers. Particularly, two machine learning reconstruction methods [Gaussian Process (GP) and Artificial Neural Network (ANN)] are applied to reconstruct the Hubble diagrams from observational data. We show that both approaches are capable of reconstructing the current constraints on possible deviations from the CDDR in the redshift range $$z\sim 2.3$$ z ∼ 2.3 . Considering four different parametric methods of CDDR, which quantify deviations from the CDDR and the standard cosmological model, we compare the results of the two different machine learning approaches. It is observed that the validity of CDDR is in well agreement with the current observational data within $$1\sigma $$ 1 σ based on the reconstructed distances through GP in the overlapping redshift domain. Moreover, we find that ultra-compact radio quasars could provide $$10^{-3}$$ 10 - 3 -level constraints on the violation parameter at high redshifts, when combined with the observations of HII galaxies. In the framework of ANN, one could derive robust constraints on the violation parameter at a precision of $$10^{-2}$$ 10 - 2 , with the validity of such distance duality relation within $$2\sigma $$ 2 σ confidence level.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 213
Author(s):  
Luis E. Padilla ◽  
Luis O. Tellez ◽  
Luis A. Escamilla ◽  
Jose Alberto Vazquez

Bayesian statistics and Markov Chain Monte Carlo (MCMC) algorithms have found their place in the field of Cosmology. They have become important mathematical and numerical tools, especially in parameter estimation and model comparison. In this paper, we review some fundamental concepts to understand Bayesian statistics and then introduce MCMC algorithms and samplers that allow us to perform the parameter inference procedure. We also introduce a general description of the standard cosmological model, known as the ΛCDM model, along with several alternatives, and current datasets coming from astrophysical and cosmological observations. Finally, with the tools acquired, we use an MCMC algorithm implemented in python to test several cosmological models and find out the combination of parameters that best describes the Universe.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
A. Hernández-Almada ◽  
Miguel A. García-Aspeitia ◽  
M. A. Rodríguez-Meza ◽  
V. Motta

AbstractMotivated by two seminal models proposed to explain the Universe acceleration, this paper is devoted to study a hybrid model which is constructed through a generalized Chaplygin gas with the addition of a bulk viscosity. We call the model a viscous generalized Chaplygin gas (VGCG) and its free parameters are constrained through several cosmological data like the Observational Hubble Parameter, Type Ia Supernovae, Baryon Acoustic Oscillations, Strong Lensing Systems, HII Galaxies and using Joint Bayesian analysis. In addition, we implement a Om-diagnostic to analyze the VGCC dynamics and its difference with the standard cosmological model. The hybrid model shows important differences when compared with the standard cosmological model. Finally, based on our Joint analysis we find that the VGCG could be an interesting candidate to alleviate the well-known Hubble constant tension.


2021 ◽  
Vol 502 (2) ◽  
pp. 3045-3056
Author(s):  
O A Kurichin ◽  
P A Kislitsyn ◽  
V V Klimenko ◽  
S A Balashev ◽  
A V Ivanchik

ABSTRACT The precision measurement of the primordial helium abundance Yp is a powerful probe of the early Universe. The most common way to determine Yp is the analyses of observations of metal-poor H ii regions found in blue compact dwarf galaxies. We present the spectroscopic sample of 100 H ii regions collected from the Sloan Digital Sky Survey. The final analysed sample consists of our sample and HeBCD data base from Izotov et al. (2007). We use a self-consistent procedure to determine physical conditions, current helium abundances, and metallicities of the H ii regions. From a regression to zero metallicity, we have obtained Yp = 0.2462 ± 0.0022, which is one of the most stringent constraints obtained with such methods up to date and is in a good agreement with the Planck result $Y_{\rm p}^{\it {\mathrm{ Planck}}} = 0.2471 \pm 0.0003$. Using the determined value of Yp and the primordial deuterium abundance taken from Particle Data Group (Zyla et al. 2020) we put a constraint on the effective number of neutrino species Neff = 2.95 ± 0.16, which is consistent with the Planck one Neff = 2.99 ± 0.17. Further increase of statistics potentially allows us to achieve Planck accuracy, which in turn will become a powerful tool for studying the self-consistency of the standard cosmological model and/or physics beyond.


Author(s):  
G. Ter-Kazarian

We describe what is essentially a correct solution to the kinematic interpretation of cosmological redshifts in standard cosmological model. In the framework of "stretching of space" point of view of the spatially homogeneous and isotropic Robertson-Walker space-time of standard cosmological model, we study so-called "lookforward" history of expanding universe, subject to certain rules, in order to overcome the ambiguity of the parallel transport of source four-velocity along the null geodesic to an observer. We interpret the cosmological redshifts as the accumulation of a series of infinitesimal "relative" spectral shifts along the path of light consequent on recession. The crux of our solution is the kinetic recession velocity of comoving astronomical object, which is always subluminal even for large redshifts of order one or more, so that it does not violate the fundamental physical principle of causality. Our analysis establishes a straightforward kinematic relationship of overall cosmological redshift and kinetic recession velocity, which is utterly distinct from a familiar global Doppler shift formula. A difference of global Doppler velocity and kinetic recession velocity, for redshifts 0.9 ≤ z ≤ 800, is ≥ 0.072c, where a maximum value, 0.187c, is reached at redshifts z = 4.5 - 5.1. A general solution is reduced to a global Doppler shift along the null geodesic. We discuss the implications for the case of a zero-density cosmological model of Milne universe, whereas a correspondence to the more usual special relativity notion of relative speed retains. In Table 1, we are summing up kinetic recession velocities of some typical distant astronomical objects with spectroscopic redshift determinations collected from the literature.


Sign in / Sign up

Export Citation Format

Share Document