scholarly journals Triple unification of inflation, dark energy, and dark matter in two-scalar-field cosmology

2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Paulo M. Sá
2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2006 ◽  
Vol 21 (15) ◽  
pp. 1241-1248 ◽  
Author(s):  
M. ARIK ◽  
M. C. ÇALIK

By using a linearized non-vacuum late time solution in Brans–Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2055-2063 ◽  
Author(s):  
HONGSHENG ZHAO

The phenomena customarily described with the standard ΛCDM model are broadly reproduced by an extremely simple model in TeVeS, Bekenstein's1 modification of general relativity motivated by galaxy phenomenology. Our model can account for the acceleration of the Universe seen at SNeIa distances without a cosmological constant, and the accelerations seen in rotation curves of nearby spiral galaxies and gravitational lensing of high-redshift elliptical galaxies without cold dark matter. The model is consistent with BBN and the neutrino mass between 0.05 eV to 2 eV. The TeVeS scalar field is shown to play the effective dual roles of dark matter and dark energy, with the amplitudes of the effects controlled by a μ function of the scalar field, called the μ essence here. We also discuss outliers to the theory's predictions on multiimaged galaxy lenses and outliers on the subgalaxy scale.


2019 ◽  
Vol 16 (08) ◽  
pp. 1950115
Author(s):  
Sujay Kr. Biswas ◽  
Subenoy Chakraborty

The present work is a second in the series of investigations of the background dynamics in brane cosmology when dark energy is coupled to dark matter by a suitable interaction. Here, dark matter is chosen in the form of perfect fluid with barotropic equation of state, while a real scalar field with self-interacting potential is chosen as dark energy. The scalar field potential is chosen as exponential or hyperbolic in nature and three different choices for the interactions between the dark species are considered. In the background of spatially flat, homogeneous and isotropic Friedmann–Robertson–Walker (FRW) brane model, the evolution equations are reduced to an autonomous system by suitable transformation of variables and a series of critical points are obtained for different interactions. By analyzing the critical points, we have found a cosmologically viable model describing an early inflationary scenario to dark energy-dominated era connecting through a matter-dominated phase.


2009 ◽  
Vol 18 (02) ◽  
pp. 289-318 ◽  
Author(s):  
R. A. EL-NABULSI

We investigate the cosmological effects of an alternative theory of gravity on the four-dimensional Randall–Sundrum braneworld of type II with a higher-order string curvature term added to the action. We discuss the possibility of a varying speed of light, which has recently attracted considerable attention, in the presence a Maxwell field and of a dynamically evolving bulk scalar field nonminimally coupled to scalar curvature in a quadratic form, together with a dark matter–dark energy interaction term. After deriving the modified Friedmann equation on the brane, as well as the scalar field equations, we then analyze the dynamical equations obtained so far. Special attention is paid to scaling solutions which could be important building blocks in constructing the models of dark energy. The constructed model exhibits several features of cosmological and astrophysical interest for both the early and the late universe, consistent with recent observations, in particular the ones concerned with celerity of light, four and five gravitational constants, black hole masses and entropies.


2015 ◽  
Vol 30 (02) ◽  
pp. 1550009 ◽  
Author(s):  
Nilanjana Mahata ◽  
Subenoy Chakraborty

A dynamical system analysis related to Dirac–Born–Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
Emre Dil

In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emergingq-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of theq-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.


Sign in / Sign up

Export Citation Format

Share Document