scholarly journals Scenario for a singularity-free generic cosmological solution

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Giovanni Montani ◽  
Roberta Chiovoloni
2008 ◽  
Vol 50 (2) ◽  
pp. 143-176 ◽  
Author(s):  
GEORGE SZEKERES ◽  
LINDSAY PETERS

AbstractThe structure of space–time is examined by extending the standard Lorentz connection group to its complex covering group, operating on a 16-dimensional “spinor” frame. A Hamiltonian variation principle is used to derive the field equations for the spinor connection. The result is a complete set of field equations which allow the sources of the gravitational and electromagnetic fields, and the intrinsic spin of a particle, to appear as a manifestation of the space–time structure. A cosmological solution and a simple particle solution are examined. Further extensions to the connection group are proposed.


1989 ◽  
Vol 155 (2) ◽  
pp. 233-240 ◽  
Author(s):  
R. K. Tarachand Singh ◽  
A. Ratnaprabha Devi

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Arjun Bagchi ◽  
Poulami Nandi ◽  
Amartya Saha ◽  
Zodinmawia

Abstract Two dimensional field theories invariant under the Bondi-Metzner-Sachs (BMS) group are conjectured to be dual to asymptotically flat spacetimes in three dimensions. In this paper, we continue our investigations of the modular properties of these field theories. In particular, we focus on the BMS torus one-point function. We use two different methods to arrive at expressions for asymptotic structure constants for general states in the theory utilising modular properties of the torus one-point function. We then concentrate on the BMS highest weight representation, and derive a host of new results, the most important of which is the BMS torus block. In a particular limit of large weights, we derive the leading and sub-leading pieces of the BMS torus block, which we then use to rederive an expression for the asymptotic structure constants for BMS primaries. Finally, we perform a bulk computation of a probe scalar in the background of a flatspace cosmological solution based on the geodesic approximation to reproduce our field theoretic results.


2021 ◽  
pp. 2140005
Author(s):  
S. M. M. Rasouli ◽  
S. Jalalzadeh ◽  
P. V. Moniz

We start by presenting a brief summary of fractional quantum mechanics, as means to convey a motivation towards fractional quantum cosmology. Subsequently, such application is made concrete with the assistance of a case study. Specifically, we investigate and then discuss a model of stiff matter in a spatially flat homogeneous and isotropic universe. A new quantum cosmological solution, where fractional calculus implications are explicit, is presented and then contrasted with the corresponding standard quantum cosmology setting.


2018 ◽  
Vol 97 (6) ◽  
Author(s):  
Robert Brandenberger ◽  
Renato Costa ◽  
Guilherme Franzmann ◽  
Amanda Weltman

2007 ◽  
Vol 16 (10) ◽  
pp. 1573-1579
Author(s):  
CHENGWU ZHANG ◽  
LIXIN XU ◽  
YONGLI PING ◽  
HONGYA LIU

We use a parameterized equation of state (EOS) of dark energy to a 5D Ricci-flat cosmological solution and suppose the universe contains two major components: dark matter and dark energy. Using the recent observational datasets: the latest 182 type Ia Supernovae Gold data, the three-year WMAP CMB shift parameter and the SDSS baryon acoustic peak, we obtain the best fit values of the EOS and two major components' evolution. We find that the best fit EOS crosses -1 in the near past where z ≃ 0.07, the present best fit value of wx(0) < -1 and for this model, the universe experiences the acceleration at about z ≃ 0.5.


Sign in / Sign up

Export Citation Format

Share Document