scholarly journals One-loop corrections to light neutrino masses in gauged U(1) extensions of the standard model

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Sho Iwamoto ◽  
Timo J. Kärkkäinen ◽  
Zoltán Péli ◽  
Zoltán Trócsányi
2011 ◽  
Vol 26 (39) ◽  
pp. 2983-2996 ◽  
Author(s):  
DMITRY V. ZHURIDOV

Economical extensions of the Standard Model (SM), in which famous Davidson–Ibarra bound on the CP asymmetry relevant for leptogenesis may be significantly relaxed by the loop effects, comparing to predictions of the SM extended only by heavy right-handed neutrinos with hierarchical masses, are discussed. This leads to decreasing of the lower bound on the heavy neutrino masses and increasing of the upper bound on the light neutrino masses, which is testable. In addition, the considered theory may help to solve the dark matter problem.


2007 ◽  
Vol 22 (31) ◽  
pp. 5889-5908 ◽  
Author(s):  
M. Abbas ◽  
W. Emam ◽  
S. Khalil ◽  
M. Shalaby

We present the phenomenology of the low scale U(1)B–L extension of the standard model and its implications at LHC. We show that this model provides a natural explanation for the presence of three right-handed neutrinos and can naturally account the observed neutrino masses and mixing. We study the decay and production of the extra gauge boson and the SM singlet scalar (heavy Higgs) predicted in this type of models. We find that the cross sections of the SM-like Higgs production are reduced by ~ 20% – 30%, while its decay branching ratios remain intact. The extra Higgs has relatively small cross sections and the branching ratios of Z′ → l+l− are of order ~ 20% compared to ~ 3% of the SM results.


2003 ◽  
Vol 18 (22) ◽  
pp. 3935-3946 ◽  
Author(s):  
THOMAS APPELQUIST

In this talk I discuss the problem of accounting for light neutrino masses in theories with dynamical electroweak symmetry breaking. I will first describe this problem generally in a class of extended technicolor (ETC) models, describing the full set of Dirac and Majorana masses that arise in such theories. I will then present an explicit model exhibiting a combination of suppressed Dirac masses and a seesaw involving dynamically generated condensates of standard-model singlet, ETC-nonsinglet fermions. Because of the suppression of the Dirac neutrino mass terms, a seesaw yielding realistic neutrino masses does not require superheavy Majorana masses; indeed, the Majorana masses are typically much smaller than the largest ETC scale.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


2013 ◽  
Vol 28 (05) ◽  
pp. 1350010 ◽  
Author(s):  
F. R. KLINKHAMER

It is pointed out (not for the first time) that the minimal Standard Model, without additional gauge-singlet right-handed neutrinos or isotriplet Higgs fields, allows for nonvanishing neutrino masses and mixing. The required interaction term is non-renormalizable and violates B-L conservation. The ultimate explanation of this interaction term may or may not rely on grand unification.


2008 ◽  
Vol 23 (10) ◽  
pp. 721-725 ◽  
Author(s):  
ERNEST MA

Adding a second scalar doublet (η+, η0) and three neutral singlet fermions N1, 2, 3 to the Standard Model of particle interactions with a new Z2 symmetry, it has been shown that [Formula: see text] or [Formula: see text] is a good dark-matter candidate and seesaw neutrino masses are generated radiatively. A supersymmetric U(1) gauge extension of this new idea is proposed, which enforces the usual R-parity of the Minimal Supersymmetric Standard Model, and allows this new Z2 symmetry to emerge as a discrete remnant.


Sign in / Sign up

Export Citation Format

Share Document