scholarly journals FREED LEPTOGENESIS

2011 ◽  
Vol 26 (39) ◽  
pp. 2983-2996 ◽  
Author(s):  
DMITRY V. ZHURIDOV

Economical extensions of the Standard Model (SM), in which famous Davidson–Ibarra bound on the CP asymmetry relevant for leptogenesis may be significantly relaxed by the loop effects, comparing to predictions of the SM extended only by heavy right-handed neutrinos with hierarchical masses, are discussed. This leads to decreasing of the lower bound on the heavy neutrino masses and increasing of the upper bound on the light neutrino masses, which is testable. In addition, the considered theory may help to solve the dark matter problem.

2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


2008 ◽  
Vol 23 (10) ◽  
pp. 721-725 ◽  
Author(s):  
ERNEST MA

Adding a second scalar doublet (η+, η0) and three neutral singlet fermions N1, 2, 3 to the Standard Model of particle interactions with a new Z2 symmetry, it has been shown that [Formula: see text] or [Formula: see text] is a good dark-matter candidate and seesaw neutrino masses are generated radiatively. A supersymmetric U(1) gauge extension of this new idea is proposed, which enforces the usual R-parity of the Minimal Supersymmetric Standard Model, and allows this new Z2 symmetry to emerge as a discrete remnant.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Ernest Ma ◽  
Diego Restrepo ◽  
Óscar Zapata

The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.


2010 ◽  
Vol 25 (25) ◽  
pp. 2111-2120 ◽  
Author(s):  
YASAMAN FARZAN

A minimalistic scenario is developed to explain dark matter and tiny but nonzero neutrino masses. A new scalar called SLIM plays the role of the dark matter. Neutrinos achieve Majorana mass through a one-loop diagram. This scenario can be realized for both real and complex SLIM. Simultaneously explaining the neutrino mass and dark matter abundance constrains the scenario. In particular for real SLIM, an upper bound of a few MeV on the masses of the new particles and a lower bound on their coupling is obtained which make the scenario testable. The low energy scenario can be embedded within various SU (2)× U (1) symmetric models. A specific example is introduced and its phenomenological consequences are discussed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nicole F. Bell ◽  
Matthew J. Dolan ◽  
Leon S. Friedrich ◽  
Michael J. Ramsey-Musolf ◽  
Raymond R. Volkas

Abstract We examine the collider and dark matter phenomenology of the Standard Model extended by a hypercharge-zero SU(2) triplet scalar and gauge singlet scalar. In particular, we study the scenario where the singlet and triplet are both charged under a single ℤ2 symmetry. We find that such an extension is capable of generating the observed dark matter density, while also modifying the collider phenomenology such that the lower bound on the mass of the triplet is smaller than in minimal triplet scalar extensions to the Standard Model. A high triplet mass is in tension with the parameter space that leads to novel electroweak phase transitions in the early universe. Therefore, the lower triplet masses that are permitted in this extended model are of particular importance for the prospects of successful electroweak baryogenesis and the generation of gravitational waves from early universe phase transitions.


2018 ◽  
Vol 33 (31) ◽  
pp. 1844017
Author(s):  
Heinrich Päs

The abundances of baryons and leptons are not only closely related to each other and to the generation of neutrino masses but may also be linked to the dark matter in the Universe. In this paper we review how a consistent physics beyond the Standard Model framework for cosmology and neutrino masses could arise by studying these interrelations.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Sho Iwamoto ◽  
Timo J. Kärkkäinen ◽  
Zoltán Péli ◽  
Zoltán Trócsányi

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 264
Author(s):  
Daniel Boyanovsky

We study various production mechanisms of sterile neutrinos in the early universe beyond and within the standard model. We obtain the quantum kinetic equations for production and the distribution function of sterile-like neutrinos at freeze-out, from which we obtain free streaming lengths, equations of state and coarse grained phase space densities. In a simple extension beyond the standard model, in which neutrinos are Yukawa coupled to a Higgs-like scalar, we derive and solve the quantum kinetic equation for sterile production and analyze the freeze-out conditions and clustering properties of this dark matter constituent. We argue that in the mass basis, standard model processes that produce active neutrinos also yield sterile-like neutrinos, leading to various possible production channels. Hence, the final distribution function of sterile-like neutrinos is a result of the various kinematically allowed production processes in the early universe. As an explicit example, we consider production of light sterile neutrinos from pion decay after the QCD phase transition, obtaining the quantum kinetic equation and the distribution function at freeze-out. A sterile-like neutrino with a mass in the keV range produced by this process is a suitable warm dark matter candidate with a free-streaming length of the order of few kpc consistent with cores in dwarf galaxies.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.


Sign in / Sign up

Export Citation Format

Share Document