scholarly journals Generating a seed magnetic field à la the chiral Biermann battery

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Arun Kumar Pandey ◽  
Sampurn Anand
2021 ◽  
Vol 30 (1) ◽  
pp. 127-131
Author(s):  
Evgeny A. Mikhailov ◽  
Ruben R. Andreasyan

Abstract A large number of galaxies have large-scale magnetic fields which are usually measured by the Faraday rotation of radio waves. Their origin is usually connected with the dynamo mechanism which is based on differential rotation of the interstellar medium and alpha-effect characterizing the helicity of the small-scale motions. However, it is necessary to have initial magnetic field which cannot be generated by the dynamo. One of the possible mechanisms is connected with the Biermann battery which acts because of different masses of protons and electrons passing from the central object. They produce circular currents which induce the vertical magnetic field. As for this field we can obtain the integral equation which can be solved by simulated annealing method which is widely used in different branches of mathematics


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
G. Fiksel ◽  
W. Fox ◽  
M.J. Rosenberg ◽  
D.B. Schaeffer ◽  
J. Matteucci ◽  
...  

Electron energization during merging of magnetized plasmas is studied using the OMEGA and OMEGA EP laser facilities by colliding two plasma plumes, each containing a Biermann-battery self-generated magnetic field. Two neighbouring plasma plumes are produced by intense laser beams, and the anti-parallel Biermann fields merge and reconnect in the process of the plumes’ expansion and collision. To isolate the merging as an acceleration source, the electron energy spectra obtained from two-plume collision shots are compared with the spectra from single-plume shots. Single-plume shots exhibit an energized electron tail with energies up to ${\sim }250\ \textrm {keV}$ . The electrons in merging experiments are additionally accelerated by ${\sim }50\text {--}100$ keV compared to single-plume shots.


Author(s):  
I J Araya ◽  
M E Rubio ◽  
M San Martín ◽  
F A Stasyszyn ◽  
N D Padilla ◽  
...  

Abstract We introduce a statistical method for estimating magnetic field fluctuations generated from primordial black hole (PBH) populations. To that end, we consider monochromatic and extended Press-Schechter PBH mass functions, such that each constituent is capable of producing its own magnetic field due to some given physical mechanism. Assuming linear correlation between magnetic field fluctuations and matter over-densities, our estimates depend on the mass function, the physical field generation mechanism by each PBH constituent, and the characteristic PBH separation. After computing the power spectrum of magnetic field fluctuations, we apply our formalism to study the plausibility that two particular field generation mechanisms could have given rise to the expected seed fields according to current observational constraints. The first mechanism is the Biermann battery and the second one is due to the accretion of magnetic monopoles at PBH formation, constituting magnetic PBHs. Our results show that, for monochromatic distributions, it does not seem to be possible to generate sufficiently intense seed fields in any of the two field generation mechanisms. For extended distributions, it is also not possible to generate the required seed field by only assuming a Biermann battery mechanism. In fact, we report an average seed field by this mechanism of about 10−47 G, at z = 20. For the case of magnetic monopoles we instead assume that the seed values from the literature are achieved and calculate the necessary number density of monopoles. In this case we obtain values that are below the upper limits from current constraints.


1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1967 ◽  
Vol 31 ◽  
pp. 355-356
Author(s):  
R. D. Davies

Observations at various frequencies between 136 and 1400 MHz indicate a considerable amount of structure in the galactic disk. This result appears consistent both with measured polarization percentages and with considerations of the strength of the galactic magnetic field.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 339-342
Author(s):  
V. N. Dermendjiev ◽  
Z. Mouradian ◽  
J.- L. Leroy ◽  
P. Duchlev

AbstractThe relation between episodically observed in the solar corona faint Hαemission structures and the long lived prominences was studied. Particular consideration was given for cases in which the corresponding prominences had undergone DB process. An MHD interpretation of the phenomenon “emissions froides” (cool emission) is proposed in which an essential role plays the prominence supporting magnetic field.


Sign in / Sign up

Export Citation Format

Share Document