scholarly journals Magnetic field generation from primordial black hole distributions

Author(s):  
I J Araya ◽  
M E Rubio ◽  
M San Martín ◽  
F A Stasyszyn ◽  
N D Padilla ◽  
...  

Abstract We introduce a statistical method for estimating magnetic field fluctuations generated from primordial black hole (PBH) populations. To that end, we consider monochromatic and extended Press-Schechter PBH mass functions, such that each constituent is capable of producing its own magnetic field due to some given physical mechanism. Assuming linear correlation between magnetic field fluctuations and matter over-densities, our estimates depend on the mass function, the physical field generation mechanism by each PBH constituent, and the characteristic PBH separation. After computing the power spectrum of magnetic field fluctuations, we apply our formalism to study the plausibility that two particular field generation mechanisms could have given rise to the expected seed fields according to current observational constraints. The first mechanism is the Biermann battery and the second one is due to the accretion of magnetic monopoles at PBH formation, constituting magnetic PBHs. Our results show that, for monochromatic distributions, it does not seem to be possible to generate sufficiently intense seed fields in any of the two field generation mechanisms. For extended distributions, it is also not possible to generate the required seed field by only assuming a Biermann battery mechanism. In fact, we report an average seed field by this mechanism of about 10−47 G, at z = 20. For the case of magnetic monopoles we instead assume that the seed values from the literature are achieved and calculate the necessary number density of monopoles. In this case we obtain values that are below the upper limits from current constraints.

1993 ◽  
Vol 157 ◽  
pp. 421-425
Author(s):  
A. Lazarian

Two mechanisms of the galactic seed field generation are discussed. One of the mechanisms implies a direct generation of the seed magnetic field through a battery process (Lazarian 1992a). The other accounts for the possibility of the preliminary amplification of the magnetic field on a scale of molecular clouds (Lazarian 1992b). This means that the galactic dynamo can feed on the non-zero average value of the magnetic field amplified by such a small-scale dynamo. It is shown that both mechanisms can generate an adequate seed field. These two scenarios of the seed magnetic field generation can be distinguished by an analysis of the present day galactic magnetic structure.


1993 ◽  
Vol 157 ◽  
pp. 429-430
Author(s):  
A. Lazarian

Magnetic field generation in molecular (atomic) clouds at the early stages of galactic evolution is considered. It is shown that if there is no internal motions immersed the cloud, battery mechanisms (Lazarian 1992a) can account for the generation of thin magnetic shells around clouds insides in plasma with temperature gradients. If turbulent motions are present, the dynamo can be essential. The operation of α — ω, α2 and turbulent dynamos within molecular clouds is discussed. It is shown that the turbulent dynamo leads to generation of magnetic fields in the trace behind the cloud. These magnetic fields within the molecular clouds and in their vicinity are important for the solution of the galactic seed field problem (see Lazarian 1992b) and the formation of structures in clumpy molecular complexes.


2010 ◽  
Vol 38 (8) ◽  
pp. 1719-1722 ◽  
Author(s):  
Victor D Selemir ◽  
Vasily A Demidov ◽  
Pavel B Repin ◽  
Andrey P Orlov ◽  
Nikolay V Egorov

Author(s):  
А.Н. Годомская ◽  
О.В. Шереметьева

В динамической модели -динамо с переменной интенсивностью -генератора моделируются инверсии магнитного поля. Изменение интенсивности -генератора как следствие синхронизации высших мод поля скоростей и магнитного поля регулируется функцией Z(t) со степенным ядром. Получены режимы динамо для двух видов радиальной составляющей в скалярной параметризации -эффекта. Проведён анализ результатов в зависимости от изменения показателя степени ядра функции Z(t), а также сравнительный анализ с результатами исследования 10, где использовано показательное ядро функциии Z(t). In the dynamic model -dimensions are simulated reversions of the magnetic field with a varying intensity of the -generator. The change of the -generator intensity as a result of synchronization of higher modes of the velocity field and the magnetic field is regulated by a function Z(t) with a power kernel. Dynamo modes are obtained for two types of radial component in the scalar parameterization of the -effect. The results were analyzed depending on the change in the exponent of the kernel of the function Z(t), also a comparative analysis with the results of the study 10, where the exponential kernel of the function Z(t) was used.


2021 ◽  
Vol 92 (12) ◽  
pp. 123506
Author(s):  
A. G. Luchinin ◽  
V. A. Malyshev ◽  
E. A. Kopelovich ◽  
K. F. Burdonov ◽  
M. E. Gushchin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document