scholarly journals Holographic deconfined QGP phase diagram and entropy with an anomalous flow in a magnetic field background

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Jiali Deng ◽  
Sheng-Qin Feng
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matúš Orendáč ◽  
Slavomír Gabáni ◽  
Pavol Farkašovský ◽  
Emil Gažo ◽  
Jozef Kačmarčík ◽  
...  

AbstractWe present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry–Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuoyu Chen ◽  
Bai Yang Wang ◽  
Adrian G. Swartz ◽  
Hyeok Yoon ◽  
Yasuyuki Hikita ◽  
...  

AbstractAnomalous metallic behavior, marked by a saturating finite resistivity much lower than the Drude estimate, has been observed in a wide range of two-dimensional superconductors. Utilizing the electrostatically gated LaAlO3/SrTiO3 interface as a versatile platform for superconductor-metal quantum phase transitions, we probe variations in the gate, magnetic field, and temperature to construct a phase diagram crossing from superconductor, anomalous metal, vortex liquid, to the Drude metal state, combining longitudinal and Hall resistivity measurements. We find that the anomalous metal phases induced by gating and magnetic field, although differing in symmetry, are connected in the phase diagram and exhibit similar magnetic field response approaching zero temperature. Namely, within a finite regime of the anomalous metal state, the longitudinal resistivity linearly depends on the field while the Hall resistivity diminishes, indicating an emergent particle-hole symmetry. The universal behavior highlights the uniqueness of the quantum bosonic metallic state, distinct from bosonic insulators and vortex liquids.


1998 ◽  
Vol 57 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Thorsten Dröse ◽  
Markus Batsch ◽  
Isa Kh. Zharekeshev ◽  
Bernhard Kramer
Keyword(s):  

2004 ◽  
Vol 69 (5) ◽  
Author(s):  
R. G. Goodrich ◽  
David P. Young ◽  
Donavan Hall ◽  
Luis Balicas ◽  
Z. Fisk ◽  
...  

2009 ◽  
Vol 78 (7) ◽  
pp. 074716 ◽  
Author(s):  
Yasuo Yoshida ◽  
Tatsuya Kawae ◽  
Yuko Hosokoshi ◽  
Katsuya Inoue ◽  
Nobuya Maeshima ◽  
...  

2008 ◽  
Vol 403 (5-9) ◽  
pp. 749-751 ◽  
Author(s):  
Y.J. Jo ◽  
L. Balicas ◽  
C. Capan ◽  
K. Behnia ◽  
P. Lejay ◽  
...  

2018 ◽  
Vol 32 (05) ◽  
pp. 1850053 ◽  
Author(s):  
Ji-Xuan Hou ◽  
Xu-Chen Yu

The long-range interacting spin-1 chain placed in a staggered magnetic field is studied by means of microcanonical approach. Firstly, we study the microcanonical entropy of the system in the thermodynamic limit and find the system is non-ergodic and can exhibit either first-order phase transition or second-order phase transition by shifting the external magnetic field strength. Secondly, we construct the global phase diagram of the system and find a phase transition area in the phase diagram corresponding to the temperature jump of the first-order phase transition.


Sign in / Sign up

Export Citation Format

Share Document