Black holes in string-generated gravity models

1988 ◽  
Vol 38 (8) ◽  
pp. 2445-2456 ◽  
Author(s):  
David L. Wiltshire
Keyword(s):  
Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Denis Arruga ◽  
Jibril Ben Achour ◽  
Karim Noui

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint, leading under some conditions to a notion of deformed covariance. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance cannot be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study static solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition. In particular, we give the expressions of the components of the effective metric (for spherically symmetric black holes interior) in terms of the functions that govern the deformations of the theory.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 25 ◽  
Author(s):  
Stanislav Alexeyev ◽  
Maxim Sendyuk

We discuss black hole type solutions and wormhole type ones in the effective gravity models. Such models appear during the attempts to construct the quantum theory of gravity. The mentioned solutions, being, mostly, the perturbative generalisations of well-known ones in general relativity, carry out additional set of parameters and, therefore could help, for example, in the studying of the last stages of Hawking evaporation, in extracting the possibilities for the experimental or observational search and in helping to constrain by astrophysical data.


2008 ◽  
Vol 2008 (07) ◽  
pp. 014 ◽  
Author(s):  
P Draggiotis ◽  
M Masip ◽  
I Mastromatteo

1994 ◽  
Vol 09 (27) ◽  
pp. 4811-4835 ◽  
Author(s):  
TAKANORI FUJIWARA ◽  
YUJI IGARASHI ◽  
JISUKE KUBO

In two-dimensional dilaton gravity theories, there may exist a global Weyl invariance which makes the black hole spurious. If the global invariance and the local Weyl invariance of the matter coupling are intact at the quantum level, there is no Hawking radiation. We explicitly verify the absence of anomalies in these symmetries for the model proposed by Callan, Giddings, Harvey and Strominger. The crucial observation is that the conformal anomaly can be cohomologically trivial and so not truly anomalous in such dilaton gravity models.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750156 ◽  
Author(s):  
Ahmed Alhamzawi

A study of the shadow cast by rotating black holes in different models of modified gravity is presented. It is shown that the size of the shadow cast depends on the modified gravity model used. The distortions of the shadow cast by modified gravity black holes are investigated and the effects are compared with the distortions cast by Kerr black hole. The shadow of a rotating black hole in modified gravity is found to be similar to the shadow cast by Kerr black hole but with different sizes and distortion effects. The naked singularity by rotating modified gravity black hole is discussed. Finally, it is shown that some modified gravity models can present a considerable contribution to the size of black hole shadow.


2012 ◽  
Vol 27 (05) ◽  
pp. 1250019 ◽  
Author(s):  
KEVIN FALLS ◽  
DANIEL F. LITIM ◽  
AARTI RAGHURAMAN

Quantum gravitational corrections to black holes are studied in four and higher dimensions using a renormalisation group improvement of the metric. The quantum effects are worked out in detail for asymptotically safe gravity, where the short-distance physics is characterized by a nontrivial fixed point of the gravitational coupling. We find that a weakening of gravity implies a decrease of the event horizon, and the existence of a Planck-size black hole remnant with vanishing temperature and vanishing heat capacity. The absence of curvature singularities is generic and discussed together with the conformal structure and the Penrose diagram of asymptotically safe black holes. The production cross-section of mini-black holes in energetic particle collisions, such as those at the Large Hadron Collider, is analysed within low-scale quantum gravity models. Quantum gravity corrections imply that cross-sections display a threshold, are suppressed in the Planckian, and reproduce the semiclassical result in the deep trans-Planckian region. Further implications are discussed.


2009 ◽  
Vol 24 (22) ◽  
pp. 4097-4115 ◽  
Author(s):  
A. MIRONOV ◽  
A. MOROZOV ◽  
T. N. TOMARAS

We argue that the signals expected from the evaporation of mini black holes — predicted in TeV-gravity models with large extra dimensions, and possibly produced in ultrahigh energy collisions in the atmosphere — are quite similar to the characteristics of the Centauro events, an old mystery of cosmic-ray physics.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Valeri P. Frolov ◽  
Andrei Zelnikov

Abstract In this paper we discuss modified gravity models in which growth of the curvature is dynamically restricted. To illustrate interesting features of such models we consider a modification of two-dimensional dilaton gravity theory which satisfies the limiting curvature condition. We show that such a model describes two-dimensional black holes which contain the de Sitter-like core instead of the singularity of the original non-modified theory. In the second part of the paper we study Vaidya type solutions of the model of the limiting curvature theory of gravity and used them to analyse properties of black holes which are created by the collapse of null fluid. We also apply these solutions to study interesting features of a black hole evaporation.


Sign in / Sign up

Export Citation Format

Share Document