scholarly journals Statistical entropy of an extremal black hole with zero- and six-brane charge

1998 ◽  
Vol 57 (4) ◽  
pp. 2421-2426 ◽  
Author(s):  
Harrison J. Sheinblatt
2009 ◽  
Vol 24 (23) ◽  
pp. 4225-4244 ◽  
Author(s):  
ASHOKE SEN

We review and extend recent attempts to find a precise relation between extremal black hole entropy and degeneracy of microstates using AdS 2/ CFT 1 correspondence. Our analysis leads to a specific relation between degeneracy of black hole microstates and an appropriately defined partition function of string theory on the near horizon geometry — named the quantum entropy function. In the classical limit this reduces to the usual relation between statistical entropy and Wald entropy.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Thiago Prudêncio

A Kaluza-Klein state configuration in black-hole qubit correspondence (BHQC) is considered in cyclic cycles of its Bekenstein-Hawking entropy. After a sequence of Peccei-Quinn transformations on the Kaluza-Klein state in cyclic cycles alternating between large and small extremal black hole (EBH) configurations, we obtain the corresponding amount of variation in the initial Bekenstein-Hawking entropy in cyclic cycles. We consider different cases where the EBH state alternates between small and large states. We then demonstrate that the total Bekenstein-Hawking entropy increases in these processes.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Tatsuo Azeyanagi ◽  
Tatsuma Nishioka ◽  
Tadashi Takayanagi

1995 ◽  
Vol 10 (28) ◽  
pp. 2081-2093 ◽  
Author(s):  
ASHOKE SEN

Some of the extremal black hole solutions in string theory have the same quantum numbers as the Bogomol’nyi saturated elementary string states. We explore the possibility that these black holes can be identified with elementary string excitations. It is shown that stringy effects could correct the Bekenstein-Hawking formula for the black hole entropy in such a way that it correctly reproduces the logarithm of the density of elementary string states. In particular, this entropy has the correct dependence on three independent parameters, the mass and the left-handed charge of the black hole, and the string coupling constant.


2004 ◽  
Vol 53 (11) ◽  
pp. 3673
Author(s):  
Li Gu-Qiang

2012 ◽  
Vol 2012 (12) ◽  
Author(s):  
Iosif Bena ◽  
Andrea Puhm ◽  
Bert Vercnocke

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Timothy J. Hollowood ◽  
S. Prem Kumar

Abstract The effect of a CFT shockwave on the entanglement structure of an eternal black hole in Jackiw-Teitelboim gravity, that is in thermal equilibrium with a thermal bath, is considered. The shockwave carries energy and entropy into the black hole and heats the black hole up leading to evaporation and the eventual recovery of equilibrium. We find an analytical description of the entire relaxational process within the semiclassical high temperature regime. If the shockwave is inserted around the Page time then several scenarios are possible depending on the parameters. The Page time can be delayed or hastened and there can be more than one transition. The final entropy saddle has a quantum extremal surface that generically starts inside the horizon but at some later time moves outside. In general, increased shockwave energy and slow evaporation rate favour the extremal surface to be inside the horizon. The shockwave also disrupts the scrambling properties of the black hole. The same analysis is then applied to a shockwave inserted into the extremal black hole with similar conclusions.


Sign in / Sign up

Export Citation Format

Share Document