scholarly journals Black hole entropy in induced gravity: Reduction to 2D quantum field theory on the horizon

1998 ◽  
Vol 58 (12) ◽  
Author(s):  
Valeri Frolov ◽  
Dmitri Fursaev
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750198 ◽  
Author(s):  
Daniel Baker ◽  
Darsh Kodwani ◽  
Ue-Li Pen ◽  
I-Sheng Yang

The black hole information paradox presumes that quantum field theory in curved space–time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space–time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jin-Yi Pang ◽  
Jiunn-Wei Chen

AbstractThe renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a λϕ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat 2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our study suggests that entanglement entropy is renormalizable and is a physical quantity.


2021 ◽  
Author(s):  
◽  
Finnian Gray

<p>In this thesis we look at the intersection of quantum field theory and general relativity. We focus on Hawking radiation from black holes and its implications. This is done on two fronts. In the first we consider the greybody factors arising from a Schwarzschild black hole. We develop a new way to numerically calculate these greybody factors using the transfer matrix formalism and the product calculus. We use this technique to calculate some of the relevant physical quantities and consider their effect on the radiation process.  The second front considers a generalisation of Wick rotation. This is motivated by the success of Wick rotation and Euclidean quantum field theory techniques to calculate the Hawking temperature. We find that, while an analytic continuation of the coordinates is not well defined and highly coordinate dependent, a direct continuation of the Lorentzian signature metric to Euclidean signature has promising results. It reproduces the Hawking temperature and is coordinate independent. However for consistency, we propose a new action for the Euclidean theory which cannot be simply the Euclidean Einstein-Hilbert action.</p>


2016 ◽  
Vol 31 (11) ◽  
pp. 1650052 ◽  
Author(s):  
Hamed Pejhan ◽  
Surena Rahbardehghan

Respecting that any consistent quantum field theory in curved space–time must include black hole radiation, in this paper, we examine the Krein–Gupta–Bleuler (KGB) formalism as an inevitable quantization scheme in order to follow the guideline of the covariance of minimally coupled massless scalar field and linear gravity on de Sitter (dS) background in the sense of Wightman–Gärding approach, by investigating thermodynamical aspects of black holes. The formalism is interestingly free of pathological large distance behavior. In this construction, also, no infinite term appears in the calculation of expectation values of the energy–momentum tensor (we have an automatic and covariant renormalization) which results in the vacuum energy of the free field to vanish. However, the existence of an effective potential barrier, intrinsically created by black holes gravitational field, gives a Casimir-type contribution to the vacuum expectation value of the energy–momentum tensor. On this basis, by evaluating the Casimir energy–momentum tensor for a conformally coupled massless scalar field in the vicinity of a nonrotating black hole event horizon through the KGB quantization, in this work, we explicitly prove that the hole produces black-body radiation which its temperature exactly coincides with the result obtained by Hawking for black hole radiation.


2020 ◽  
Vol 29 (11) ◽  
pp. 2041008
Author(s):  
Rafael P. Bernar

We analyze the scalar radiation emitted by a source in a circular geodesic orbit around a spherically symmetric black hole. The black hole (BH) spacetime considered is quite general, in the sense that it encompasses the solutions of Schwarzschild and Reissner–Nordström, and also the Bardeen solution of a regular BH. We use the framework of quantum field theory in curved spaces to compute the one-particle emission amplitude of scalar particles and related quantities.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Dionysios Anninos ◽  
Diego Hofman ◽  
Jorrit Kruthoff

We consider quantum field theory near the horizon of an extreme Kerr black hole. In this limit, the dynamics is well approximated by a tower of electrically charged fields propagating in an SL(2,\mathbb{R})SL(2,ℝ) invariant AdS_22 geometry endowed with a constant, symmetry preserving background electric field. At large charge the fields oscillate near the AdS_22 boundary and no longer admit a standard Dirichlet treatment. From the Kerr black hole perspective, this phenomenon is related to the presence of an ergosphere. We discuss a definition for the quantum field theory whereby we ‘UV’ complete AdS_22 by appending an asymptotically two dimensional Minkowski region. This allows the construction of a novel observable for the flux-carrying modes that resembles the standard flat space SS-matrix. We relate various features displayed by the highly charged particles to the principal series representations of SL(2,\mathbb{R})SL(2,ℝ). These representations are unitary and also appear for massive quantum fields in dS_22.


2021 ◽  
Author(s):  
◽  
Finnian Gray

<p>In this thesis we look at the intersection of quantum field theory and general relativity. We focus on Hawking radiation from black holes and its implications. This is done on two fronts. In the first we consider the greybody factors arising from a Schwarzschild black hole. We develop a new way to numerically calculate these greybody factors using the transfer matrix formalism and the product calculus. We use this technique to calculate some of the relevant physical quantities and consider their effect on the radiation process.  The second front considers a generalisation of Wick rotation. This is motivated by the success of Wick rotation and Euclidean quantum field theory techniques to calculate the Hawking temperature. We find that, while an analytic continuation of the coordinates is not well defined and highly coordinate dependent, a direct continuation of the Lorentzian signature metric to Euclidean signature has promising results. It reproduces the Hawking temperature and is coordinate independent. However for consistency, we propose a new action for the Euclidean theory which cannot be simply the Euclidean Einstein-Hilbert action.</p>


2003 ◽  
Vol 18 (21) ◽  
pp. 1463-1471 ◽  
Author(s):  
Kumar S. Gupta ◽  
Siddhartha Sen

Quantum field theory in the near-horizon region of a black hole predicts the existence of an infinite number of degenerate modes. Such a degeneracy is regulated in the brick wall model by the introduction of a short distance cutoff. In this paper we show that states of the brick wall model with nonzero energy admit a further degeneracy for any given finite value of the cutoff. The black hole entropy is calculated within the brick wall model taking this degeneracy into account. Modes with complex frequencies however do not exhibit such a degeneracy.


Sign in / Sign up

Export Citation Format

Share Document