scholarly journals Gauge invariant perturbations of scalar-tensor cosmologies: The vacuum case

2006 ◽  
Vol 74 (12) ◽  
Author(s):  
Sante Carloni ◽  
Peter K. S. Dunsby ◽  
Claudio Rubano
Keyword(s):  
Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nakao Hayashi ◽  
Chunhua Li ◽  
Pavel I. Naumkin

We consider the initial value problem for the nonlinear dissipative Schrödinger equations with a gauge invariant nonlinearityλup-1uof orderpn<p≤1+2/nfor arbitrarily large initial data, where the lower boundpnis a positive root ofn+2p2-6p-n=0forn≥2andp1=1+2forn=1.Our purpose is to extend the previous results for higher space dimensions concerningL2-time decay and to improve the lower bound ofpunder the same dissipative condition onλ∈C:Im⁡ λ<0andIm⁡ λ>p-1/2pRe λas in the previous works.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ali Akil ◽  
Xi Tong

Abstract We point out the necessity of resolving the apparent gauge dependence in the quantum corrections of cosmological observables for Higgs-like inflation models. We highlight the fact that this gauge dependence is due to the use of an asymmetric background current which is specific to a choice of coordinate system in the scalar manifold. Favoring simplicity over complexity, we further propose a practical shortcut to gauge-independent inflationary observables by using effective potential obtained from a polar-like background current choice. We demonstrate this shortcut for several explicit examples and present a gauge-independent prediction of inflationary observables in the Abelian Higgs model. Furthermore, with Nielsen’s gauge dependence identities, we show that for any theory to all orders, a gauge-invariant current term gives a gauge-independent effective potential and thus gauge-invariant inflationary observables.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Stefan Dittmaier ◽  
Timo Schmidt ◽  
Jan Schwarz

Abstract First results on the radiative corrections of order $$ \mathcal{O} $$ O (Nfαsα) are presented for the off-shell production of W or Z bosons at the LHC, where Nf is the number of fermion flavours. These corrections comprise all diagrams at $$ \mathcal{O} $$ O (αsα) with closed fermion loops, form a gauge-invariant part of the next-to-next-to-leading-order corrections of mixed QCD×electroweak type, and are the ones that concern the issue of mass renormalization of the W and Z resonances. The occurring irreducible two-loop diagrams, which involve only self-energy insertions, are calculated with current standard techniques, and explicit analytical results on the electroweak gauge-boson self-energies at $$ \mathcal{O} $$ O (αsα) are given. Moreover, the generalization of the complex-mass scheme for a gauge-invariant treatment of the W/Z resonances is described for the order $$ \mathcal{O} $$ O (αsα). While the corrections, which are implemented in the Monte Carlo program Rady, are negligible for observables that are dominated by resonant W/Z bosons, they affect invariant-mass distributions at the level of up to 2% for invariant masses of ≳ 500 GeV and are, thus, phenomenologically relevant. The impact on transverse-momentum distributions is similar, taking into account that leading-order predictions to those distributions underestimate the spectrum.


1989 ◽  
Vol 78 (2) ◽  
pp. 185-191 ◽  
Author(s):  
A. N. Sisakyan ◽  
N. B. Skachkov ◽  
I. L. Solovtsov ◽  
O. Yu. Shevchenko

1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Etienne Blanco ◽  
Andreas van Hameren ◽  
Piotr Kotko ◽  
Krzysztof Kutak

Abstract We calculate one loop scattering amplitudes for arbitrary number of positive helicity on-shell gluons and one off-shell gluon treated within the quasi-multi Regge kinematics. The result is fully gauge invariant and possesses the correct on-shell limit. Our method is based on embedding the off-shell process, together with contributions needed to retain gauge invariance, in a bigger fully on-shell process with auxiliary quark or gluon line.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Qiang Chen ◽  
Jianyuan Xiao ◽  
Peifeng Fan

Abstract A class of high-order canonical symplectic structure-preserving geometric algorithms are developed for high-quality simulations of the quantized Dirac-Maxwell theory based strong-field quantum electrodynamics (SFQED) and relativistic quantum plasmas (RQP) phenomena. With minimal coupling, the Lagrangian density of an interacting bispinor-gauge fields theory is constructed in a conjugate real fields form. The canonical symplectic form and canonical equations of this field theory are obtained by the general Hamilton’s principle on cotangent bundle. Based on discrete exterior calculus, the gauge field components are discreted to form a cochain complex, and the bispinor components are naturally discreted on a staggered dual lattice as combinations of differential forms. With pull-back and push-forward gauge covariant derivatives, the discrete action is gauge invariant. A well-defined discrete canonical Poisson bracket generates a semi-discrete lattice canonical field theory (LCFT), which admits the canonical symplectic form, unitary property, gauge symmetry and discrete Poincaré subgroup, which are good approximations of the original continuous geometric structures. The Hamiltonian splitting method, Cayley transformation and symmetric composition technique are introduced to construct a class of high-order numerical schemes for the semi-discrete LCFT. These schemes involve two degenerate fermion flavors and are locally unconditional stable, which also preserve the geometric structures. Admitting Nielsen-Ninomiya theorem, the continuous chiral symmetry is partially broken on the lattice. As an extension, a pair of discrete chiral operators are introduced to reconstruct the lattice chirality. Equipped with statistically quantization-equivalent ensemble models of the Dirac vacuum and non-trivial plasma backgrounds, the schemes are expected to have excellent performance in secular simulations of relativistic quantum effects, where the numerical errors of conserved quantities are well bounded by very small values without coherent accumulation. The algorithms are verified in detail by numerical energy spectra. Real-time LCFT simulations are successfully implemented for the nonlinear Schwinger mechanism induced e-e+ pairs creation and vacuum Kerr effect, where the nonlinear and non-perturbative features captured by the solutions provide a complete strong-field physical picture in a very wide range, which open a new door toward high-quality simulations in SFQED and RQP fields.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


Sign in / Sign up

Export Citation Format

Share Document