scholarly journals Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

2011 ◽  
Vol 83 (4) ◽  
Author(s):  
Sachiko Kuroyanagi ◽  
Takeshi Chiba ◽  
Naoshi Sugiyama
Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 137
Author(s):  
Andrzej Królak ◽  
Paritosh Verma

In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations.


2011 ◽  
Vol 7 (S285) ◽  
pp. 103-103
Author(s):  
Benjamin W. Stappers

AbstractPulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency.By probing these and slightly longer time-scales we find that pulsars exhibit “glitches”, which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars—the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system.Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars themselves can be used as the arms of a Galactic-scale gravitational-wave detector. Measuring correlated deviations in the arrival times of pulses from a number of pulsars distributed throughout the Galaxy could give rise to a direct detection of the stochastic gravitational-wave background, which is associated with the astrophysics of the early Universe—most likely from supermassive black-hole binary systems, but potentially also from cosmic strings. While they are famed for their clock-like rotational stability, some pulsars—in particular the more youthful ones—exhibit modulation in pulse arrival times, often called timing noise. It was recently demonstrated that in at least some cases this variability is deterministic and is associated with modulations in the pulsar emission properties and the spin-down rate. This breakthrough may lead to further improvements in the precision which can be achieved with pulsar timing, and enhance still further the ability to test theories of gravity directly and to make a direct detection of gravitational waves.I presented some of the history of what is known about the variations in pulsars on all these time-scales and reviewed some of the recent achievements in our understanding of the phenomena. I also highlighted how new transients associated with radio-emitting neutron stars are being discovered, and how other transient sources are being identified by the same techniques. These continued improvements have come about without new telescopes, but the next generation of very sensitive wide-field instruments will permit observational cadences which will reveal many new manifestations and will further revolutionise our understanding of this class of objects which have such high astrophysical potential.


2012 ◽  
Vol 14 ◽  
pp. 260-269 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
MARIAFELICIA DE LAURENTIS

It is shown that linearizing higher order theories of gravity, further gravitational massive modes emerge. Besides massless spin-2, also spin-0 and spin-2 massive and ghost fields have to be considered. We investigate the possible detectability of such additional modes on the stochastic cosmic background of gravitational waves by ground-based and space interferometric detectors and calculate the detectable energy density of the spectrum. In conclusion, these massive modes could be of interest for direct detection by the forthcoming LISA experiment.


2016 ◽  
Vol 186 (10) ◽  
pp. 1133-1152 ◽  
Author(s):  
V.I. Pustovoit

Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


Author(s):  
Gianfranco Bertone

The spectacular advances of modern astronomy have opened our horizon on an unexpected cosmos: a dark, mysterious Universe, populated by enigmatic entities we know very little about, like black holes, or nothing at all, like dark matter and dark energy. In this book, I discuss how the rise of a new discipline dubbed multimessenger astronomy is bringing about a revolution in our understanding of the cosmos, by combining the traditional approach based on the observation of light from celestial objects, with a new one based on other ‘messengers’—such as gravitational waves, neutrinos, and cosmic rays—that carry information from otherwise inaccessible corners of the Universe. Much has been written about the extraordinary potential of this new discipline, since the 2017 Nobel Prize in physics was awarded for the direct detection of gravitational waves. But here I will take a different angle and explore how gravitational waves and other messengers might help us break the stalemate that has been plaguing fundamental physics for four decades, and to consolidate the foundations of modern cosmology.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544023 ◽  
Author(s):  
C. Sivaram

Attempts to detect gravitational waves is actively in progress with sophisticated devices like LIGO setup across continents. Despite being predicted almost 100 years ago, there has so far been no direct detection of these waves. In this work, we draw attention to some of the less discussed but subtle aspects arising, for example, from high orbital eccentricities, where emission near periastron could be millions of times more than that in the distant parts of the orbit. The strong field nonlinear effects close to the compact objects can substantially slow down and deflect the waves in the last (few) orbit(s) where much of the intensity is expected. Spin–orbit and other forces could be significant. There would also be plasma like resonant absorption (of kilohertz radiation) during the collapse. Recent observation of supermassive black holes at high redshift implies cluster collapse, where the gravitational wave intensity depends on very high powers of the mass. Any unambiguous claim of detection should perhaps consider several of these effects.


2017 ◽  
Vol 4 (5) ◽  
pp. 687-706 ◽  
Author(s):  
Rong-Gen Cai ◽  
Zhoujian Cao ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang ◽  
Tao Yang

Abstract The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined with other cosmological probes. The gravitational-wave physics is not only related to gravitation theory, but also is closely tied to fundamental physics, cosmology and astrophysics. In this review article, three kinds of sources of gravitational waves and relevant physics will be discussed, namely gravitational waves produced during the inflation and preheating phases of the Universe, the gravitational waves produced during the first-order phase transition as the Universe cools down and the gravitational waves from the three phases: inspiral, merger and ringdown of a compact binary system, respectively. We will also discuss the gravitational waves as a standard siren to explore the evolution of the Universe.


Sign in / Sign up

Export Citation Format

Share Document