scholarly journals Lifshitz black holes in Einstein-Yang-Mills theory

2014 ◽  
Vol 89 (12) ◽  
Author(s):  
Deniz Olgu Devecioğlu
2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Deniz O. Devecioğlu

Abstract We compute the holographic stress tensor of colored Lifshitz spacetimes following the proposal by Ross-Saremi for gravity duals of non-relativistic theories. For a well-defined variational principle, we first construct a finite on-shell action for the Einstein-Yang-Mills model in four dimensions with Lifshitz spacetime as a solution. We then solve the linearised equations of motion and identify the modes that preserve the asymptotically Lifshitz condition. Employing these modes, we also show that the stress tensor is finite, obeying the scaling and the diffeomorphism Ward identities, i.e., conservations laws. As a final application, we evaluate the energy density and the spatial stress tensor of the previously found numerical black hole solutions with various dynamical exponents z. The alternative Smarr relation that has been used in Lifshitz black holes and the first law of thermodynamics are shown to hold without a global Yang-Mills charge, indicating the black holes in question are hairy.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2011 ◽  
Vol 303 (1) ◽  
pp. 127-148
Author(s):  
George T. Kottanattu ◽  
Jorma Louko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document