lifshitz black holes
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Alfredo Herrera-Aguilar ◽  
Jhony A. Herrera-Mendoza ◽  
Daniel F. Higuita-Borja

AbstractWe present a spinning black hole solution in d dimensions with a maximal number of rotation parameters in the context of the Einstein–Maxwell-Dilaton theory. An interesting feature of such a solution is that it accommodates Lifshitz black holes when the rotation parameters are set to zero. We verify the rotating nature of the black hole solution by performing the quasi-local analysis of conserved charges and defining the corresponding angular momenta. In addition, we perform the thermodynamical analysis of the black hole configuration, show that the first law of thermodynamics is completely consistent, and obtain a Smarr-like formula. We further study the thermodynamic stability of the constructed solution from a local viewpoint, by computing the associated specific heats, and from a global perspective, by using the so-called new thermodynamic geometry. We finally make some comments related to a pathology found in the causal structure of the obtained rotating black hole spacetime and compute some of its curvature invariants.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Deniz O. Devecioğlu

Abstract We compute the holographic stress tensor of colored Lifshitz spacetimes following the proposal by Ross-Saremi for gravity duals of non-relativistic theories. For a well-defined variational principle, we first construct a finite on-shell action for the Einstein-Yang-Mills model in four dimensions with Lifshitz spacetime as a solution. We then solve the linearised equations of motion and identify the modes that preserve the asymptotically Lifshitz condition. Employing these modes, we also show that the stress tensor is finite, obeying the scaling and the diffeomorphism Ward identities, i.e., conservations laws. As a final application, we evaluate the energy density and the spatial stress tensor of the previously found numerical black hole solutions with various dynamical exponents z. The alternative Smarr relation that has been used in Lifshitz black holes and the first law of thermodynamics are shown to hold without a global Yang-Mills charge, indicating the black holes in question are hairy.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Gaston Giribet ◽  
Edmundo Lavia

AbstractIt is well known that massive 3D gravity admits solutions that describe Lifshitz black holes as those considered in non-relativistic holography. However, the determination of the mass of such black holes remained unclear as many different results were reported in the literature presenting discrepancies. Here, by using a robust method that permits to tackle the problem in the strong field regime, we determine the correct mass of the Lifshitz black hole of the higher-derivative massive gravity and compare it with other results obtained by different methods. Positivity of the mass spectrum demands an odd normalization of the gravity action. In spite of this fact, the result turns out to be consistent with computations inspired in holography.


2020 ◽  
Vol 37 (19) ◽  
pp. 195023
Author(s):  
Kai-Xin Zhu ◽  
Fu-Wen Shu ◽  
Dong-Hui Du

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Jie Jiang ◽  
Ming Zhang

AbstractIn this paper, based on the new version of the gedanken experiments proposed by Sorce and Wald, we examine the weak cosmic censorship in the perturbation process of accreting matter fields for the charged dilaton-Lifshitz black holes. In the investigation, we assume that the black hole is perturbed by some extra matter source satisfied the null energy condition and ultimately settle down to a static charged dilaton-Lifshitz black hole in the asymptotic future. Then, after applying the Noether charge method, we derive the first-order and second-order perturbation inequalities of the perturbation matter fields. As a result, we find that the nearly extremal charged dilaton-Lifshitz black hole cannot be destroyed under the second-order approximation of perturbation. This result implies that the weak cosmic censorship conjecture might be a general feature of the Einstein gravity, and it is independent of the asymptotic behaviors of the black holes.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050143
Author(s):  
Gülni̇hal Tokgöz ◽  
İzzet Sakallı

In this work, the Dirac equation is studied in the [Formula: see text] Lifshitz black hole ([Formula: see text]LBH) spacetime. The set of equations representing the Dirac equation in the Newman–Penrose (NP) formalism is decoupled into a radial set and an angular set. The separation constant is obtained with the aid of the spin weighted spheroidal harmonics. The radial set of equations, which are independent of mass, is reduced to Zerilli equations (ZEs) with their associated potentials. In the near horizon (NH) region, these equations are solved in terms of the Bessel functions of the first and second kinds arising from the fermionic perturbation on the background geometry. For computing the boxed quasinormal modes (BQNMs) instead of the ordinary quasinormal modes (QNMs), we first impose the purely ingoing wave condition at the event horizon. Then, Dirichlet boundary condition (DBC) and Newmann boundary condition (NBC) are applied in order to get the resonance conditions. For solving the resonance conditions, we follow the Hod’s iteration method. Finally, Maggiore’s method (MM) is employed to derive the entropy/area spectra of the [Formula: see text]LBH which are shown to be equidistant.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Eloy Ayón-Beato ◽  
Moisés Bravo-Gaete ◽  
Francisco Correa ◽  
Mokhtar Hassaine ◽  
María Montserrat Juárez-Aubry

Author(s):  
Gonçalo M. Quinta ◽  
Antonino Flachi ◽  
José P. S. Lemos

Sign in / Sign up

Export Citation Format

Share Document