scholarly journals Holographic stress tensor of colored Lifshitz spacetimes and hairy black holes

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Deniz O. Devecioğlu

Abstract We compute the holographic stress tensor of colored Lifshitz spacetimes following the proposal by Ross-Saremi for gravity duals of non-relativistic theories. For a well-defined variational principle, we first construct a finite on-shell action for the Einstein-Yang-Mills model in four dimensions with Lifshitz spacetime as a solution. We then solve the linearised equations of motion and identify the modes that preserve the asymptotically Lifshitz condition. Employing these modes, we also show that the stress tensor is finite, obeying the scaling and the diffeomorphism Ward identities, i.e., conservations laws. As a final application, we evaluate the energy density and the spatial stress tensor of the previously found numerical black hole solutions with various dynamical exponents z. The alternative Smarr relation that has been used in Lifshitz black holes and the first law of thermodynamics are shown to hold without a global Yang-Mills charge, indicating the black holes in question are hairy.

2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


2014 ◽  
Vol 92 (1) ◽  
pp. 76-81 ◽  
Author(s):  
S.H. Hendi ◽  
B. Eslam Panah ◽  
C. Corda

We consider a class of spherically symmetric space–time to obtain some interesting solutions in F(R) gravity without matter field (pure gravity). We investigate the geometry of the solutions and find that there is an essential singularity at the origin. In addition, we show that there is an analogy between obtained solutions with the black holes of Einstein-Λ-power Maxwell invariant theory. Furthermore, we find that these solutions are equivalent to the asymptotically Lifshitz black holes. Also, we calculate d2F/dR2 to examine the Dolgov–Kawasaki stability criterion.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Fatemeh Naeimipour ◽  
Behrouz Mirza ◽  
Fatemeh Masoumi Jahromi

AbstractIn this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang–Mills theory. At first step, we consider the SO(n) and $$SO(n-1,1)$$ S O ( n - 1 , 1 ) semisimple gauge groups. We obtain the analytic quartic quasitopological Yang–Mills black hole solutions. Real solutions are only accessible for the positive value of the redefined quartic quasitopological gravity coefficient, $$\mu _{4}$$ μ 4 . These solutions have a finite value and an essential singularity at the origin, $$r=0$$ r = 0 for space dimension higher than 8. We also probe the thermodynamic and critical behavior of the quasitopological Yang–Mills black hole. The obtained solutions may be thermally stable only in the canonical ensemble. They may also show a first order phase transition from a small to a large black hole. In the second step, we obtain the pure quasitopological Yang–Mills black hole solutions. For the positive cosmological constant and the space dimensions greater than eight, the pure quasitopological Yang–Mills solutions have the ability to produce both the asymptotically AdS and dS black holes for respectively the negative and positive constant curvatures, $$k=-1$$ k = - 1 and $$k=+1$$ k = + 1 . This is unlike the quasitopological Yang–Mills theory which can lead to just the asymptotically dS solutions for $$\Lambda >0$$ Λ > 0 . The pure quasitopological Yang–Mills black hole is not thermally stable.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fatemeh Naeimipour ◽  
Masoumeh Tavakoli

In this paper, we investigate the thermal stability and Joule-Thomson expansion of some new quasitopological black hole solutions. We first study the higher-dimensional static quasitopological black hole solutions in the presence of Born-Infeld, exponential, and logarithmic nonlinear electrodynamics. The stable regions of these solutions are independent of the types of the nonlinear electrodynamics. The solutions with horizons relating to the positive constant curvature, k=+1, have a larger region in thermal stability, if we choose positive quasitopological coefficients, μi>0. We also review the power Maxwell quasitopological black hole. We then obtain the five-dimensional Yang-Mills quasitopological black hole solution and compare it with the quasitopological Maxwell solution. For large values of the electric charge, q, and the Yang-Mills charge, e, we showed that the stable range of the Maxwell quasitopological black hole is larger than the Yang-Mills one. This is while thermal stability for small charges has the same behavior for these black holes. Thereafter, we obtain the thermodynamic quantities for these solutions and then study the Joule-Thomson expansion. We consider the temperature changes in an isenthalpic process during this expansion. The obtained results show that the inversion curves can divide the isenthalpic ones into two parts in the inversion pressure, Pi. For P<Pi, a cooling phenomenon with positive slope happens in T−P diagram, while there is a heating process with a negative slope for P>Pi. As the values of the nonlinear parameter, β, the electric and Yang-Mills charges decrease, the temperature goes to zero with a small slope and so the heating phenomena happens slowly.


Author(s):  
Yong Xiao ◽  
Longting Zhang

Abstract The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties, but the black hole solutions in this theory are still not fully understood. In the paper, we concentrate on studying the charged black holes in such a theory. Adding the electromagnetic field part to the effective action, we show how the black hole solutions around the Reissner-Nordstr{\"o}m metric can be solved perturbatively and iteratively. We further calculate the corresponding temperature, entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
P. Bargueño ◽  
J. A. Miralles ◽  
J. A. Pons

AbstractIn this work we extend the first law of thermodynamics to spherically symmetric black hole solutions in the context of scale-dependent gravity. After deriving generalized expressions for both the entropy and energy due to the spatial variation of the gravitational constant we analize, by pointing out some relations between scale-dependent and f(R) theories, whether or not the former can be described using equilibrium thermodynamics.


2010 ◽  
Vol 19 (03) ◽  
pp. 293-303 ◽  
Author(s):  
M. H. DEHGHANI ◽  
A. BAZRAFSHAN

We present the topological solutions of Einstein dilaton gravity in the presence of a non-Abelian Yang–Mills field. In four dimensions, we consider the So(3) and So(2, 1) semisimple group as the Yang–Mills gauge group, and introduce the black hole solutions with spherical and hyperbolic horizons, respectively. The solution in the absence of dilaton potential is asymptotically flat and exists only with a spherical horizon. Contrary to the nonextreme Reissner–Nordstrom black hole, which has two horizons with a timelike and avoidable singularity, here the solution may present a black hole with a null and unavoidable singularity with only one horizon. In the presence of dilaton potential, the asymptotic behavior of the solutions is neither flat nor anti–de Sitter. These solutions contain a null and avoidable singularity, and may present a black hole with two horizons, an extreme black hole or a naked singularity. We also calculate the mass of the solutions through the use of a modified version of the Brown–York formalism, and consider the first law of thermodynamics.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Vishnu Jejjala ◽  
Yang Lei ◽  
Sam van Leuven ◽  
Wei Li

Abstract The entropy of 1/16-th BPS AdS5 black holes can be microscopically accounted for by the superconformal index of the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory. One way to compute this is through a Cardy-like limit of a formula for the index obtained in [1] using the “S-transformation” of the elliptic Γ function. In this paper, we derive more general SL(3, ℤ) modular properties of the elliptic Γ function. We then use these properties to obtain a three integer parameter family of generalized Cardy-like limits of the $$ \mathcal{N} $$ N = 4 superconformal index. From these limits, we obtain entropy formulae that have a similar form as that of the original AdS5 black hole, up to an overall rescaling of the entropy. We interpret this both on the field theory and the gravitational side. Finally, we comment on how our work suggests a generalization of the Farey tail to four dimensions.


Sign in / Sign up

Export Citation Format

Share Document