scholarly journals Supermassive black hole tests of general relativity with eLISA

2015 ◽  
Vol 91 (2) ◽  
Author(s):  
Cédric Huwyler ◽  
Edward K. Porter ◽  
Philippe Jetzer
2020 ◽  
Vol 6 (12) ◽  
pp. eaaz1310 ◽  
Author(s):  
Michael D. Johnson ◽  
Alexandru Lupsasca ◽  
Andrew Strominger ◽  
George N. Wong ◽  
Shahar Hadar ◽  
...  

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.


1979 ◽  
Vol 84 ◽  
pp. 401-404
Author(s):  
B. Paczyński ◽  
V. Trimble

There is a reasonable chance of finding a (probably X-ray) pulsar in a short-period orbit around the galactic center. Such a pulsar can provide a test distinguishing a central black hole from a supermassive object or spinar. It also makes available a good clock in a region of space in which GM/Rc2 is much larger than solar system values, thus allowing strong-field tests of general relativity.


Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 664-668 ◽  
Author(s):  
Tuan Do ◽  
Aurelien Hees ◽  
Andrea Ghez ◽  
Gregory D. Martinez ◽  
Devin S. Chu ◽  
...  

The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.


2019 ◽  
Vol 100 (10) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
...  

2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Alexandre Toubiana ◽  
Sylvain Marsat ◽  
Stanislav Babak ◽  
Enrico Barausse ◽  
John Baker

Science ◽  
2012 ◽  
Vol 338 (6103) ◽  
pp. 84-87 ◽  
Author(s):  
L. Meyer ◽  
A. M. Ghez ◽  
R. Schödel ◽  
S. Yelda ◽  
A. Boehle ◽  
...  

Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy’s supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein’s theory of general relativity in an unexplored regime.


2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 11-20
Author(s):  
Vesna Borka-Jovanovic ◽  
Predrag Jovanovic ◽  
Dusko Borka ◽  
Salvatore Capozziello ◽  
Stefania Gravina ◽  
...  

The aim of our investigation is to derive a particular theory among the class of scalar-tensor(ST) theories of gravity, and then to test it by studying kinematics and dynamics of S-stars around a supermassive black hole (BH) at Galactic Center (GC). We also discuss the Newtonian limit of this class of ST theories of gravity, as well as its parameters. We compare the observed orbit of S2 star with our simulated orbit which we obtained theoretically with the derived ST potential and constrained parameters. Using the obtained best-fit parameters we calculated orbital precession of S2 star in ST gravity and found that it has the same direction as in General Relativity (GR) but causes much larger pericenter shift.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050034 ◽  
Author(s):  
Tuhina Manna ◽  
Farook Rahaman ◽  
Monimala Mondal

In this paper, we have investigated the classical tests of General Relativity like precession of perihelion, deflection of light and time delay by considering a phenomenological astrophysical object like Sun, as a neutral regular Hayward black hole in Rastall gravity. We have tabulated all our results for some appropriate values of the parameter [Formula: see text]. We have compared our values with [Formula: see text], which corresponds to the Schwarzschild case. Also the value of [Formula: see text] is of particular interest as it gives some promising results.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Sayantani Datta ◽  
Anuradha Gupta ◽  
Shilpa Kastha ◽  
K. G. Arun ◽  
B. S. Sathyaprakash

Sign in / Sign up

Export Citation Format

Share Document